PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 13 Amines Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 13 Amines

PSEB 12th Class Chemistry Guide Amines InText Questions and Answers

Question 1.
Write IUPAC names of the following compounds and classify them into primary, secondary, and tertiary amines.
(i) (CH3)2CHNH2
(ii) CH3(CH2)2NH2
(iii) CH3NHCH(CH3)2
(iv) (CH3)3CNH2
(v) C6H5NHCH3
(vi) (CH3CH2)2NCH3
(vii) m-BrC6H4NH2
Answer:
(i) Propan-2-amine (1° amine)
(ii) Propan-1-amine (1° amine)
(iii) N-Methylpropan-2-amine (2° amine)
(iv) 2-Methylpropan-2-amine (1° amine)
(v) AT-Methylbenzenamine or N-methylaniline (2° amine)
(vi) N-Ethyl-N-methyl ethan amine (3° amine)
(vii) 3-Bromobenzenamine or 3-bromoaniline (1° amine)

Question 2.
Give one chemical test to distinguish between the following pairs of compounds.
(i) Methylamine and dimethylamine
(ii) Secondary and tertiary amines
(iii) Ethylsunine and aniline
(iv) Aniline and benzylrnnlne
(v) Aniline and N-inethylaniline.
Answer:
(i) Methylamlne is 1° amine, therefore, it gives carbylamine test, i.e., when heated with an alcoholic solution of KOH and CHCl3, it gives an offensive smell of methyl carbylamine. In contrast, dimethylamine is a secondary amine and hence does not give this test.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 1
(ii) Secondary amines (both aliphatic and aromatic) react with nitrous acid to form nitrosamines (yellow oily liquid)
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 2
When the yellow oily liquid is warmed with a crystal of phenol and a few drops of conc. H2SO4, a greenish solution is formed. It changes to red on dilution with water but changes to deep blue on addition of aqueous NaOH solution. Tertiary amines do not give this test.

(iii) Ethylamine (primary aliphatic amine) and aniline (primary aromatic amine) can be distinguished by azo dye test.
Aniline responds to this test whereas ethyl amine does not.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 3

(iv) Benzylantine reacts with nitrous acid to form a diazonium salt which being unstable even at low temperature, decomposes with evolution of N2 gas.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 4
Aniline reacts with HNO2 to form benzene diazonium chloride which is stable at 273-278 K and hence does not decompose to evolve N2 gas.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 5
(v) Aniline being a primary amine gives carbylamine test, i.e., when heated with an alcoholic solution of KOH and CHCl3, it gives an offensive smell of phenyl isocyanide. In contrast, N-methyl aniline, being secondary amine does not give this test.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 6

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 3.
Account for the following:
(i) pKb of aniline is more than that of methylamine.
(ii) Ethylamme is soluble in water whereas aniline is not.
(iii) Methylamine in water reacts with ferric chloride to precipitate hydrated ferric oxide.
(iv) Although the amino group is o-and p-directing in aromatic electrophilic substitution reactions, aniline on nitration gives a substantial amount of m -nitroaniline.
(v) Aniline does not undergo Friedel Crafts reaction.
(vi) Diazonium salts of aromatic amines are more stable than those of aliphatic amines.
(vii) Gabriel phthalimide synthesis is preferred for synthesizing primary amines.
Answer:
(i) In aniline due to resonance, the lone pair of electrons on the N-atom are delocalized over the benzene ring. Due to this, electron density on the nitrogen decreases. On the other hand, in CH3NH2, +I effect of CH3 increases the electron density on the N-atom. Consequently, aniline is a weaker base than methylamine and hence its pKb value is higher than that of methylamine.

(ii) Ethylamine dissolves in water because it forms H-bonds with water molecules as shown below :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 7
In aniline, due to the large hydrocarbon part the extent of H-bonding decreases considerably and hence aniline is insoluble in water.
(iii) Methylamine in water reacts with ferric chloride to precipitate hydrated fem oxide:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 8
Due to the +I effect of – CH3 group, methylamine is more basic than water. Therefore, in water, methylamine produces OH ions by accepting H+ ions from water.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 9
Ferric chloride (FeCl3) dissociates in water to form Fe3+ and Cl ions.
FeCl3 → Fe3++ +3Cl
Then, OH ion reacts with Fe3+ ion to form a precipitate of hydrated ferric oxide.
2Fe3+ +6OH → Fe2O3 -3H2O Hydrated ferric oxide

(iv) Nitration is usually carried out with a mixture of cone. HNO3 and cone. H2SO4.
In presence of these acids, most of aniline gets protonated to form anilinium ion. Thus, in presence of acids, the reaction mixture consists of aniline and anilinium ion. The -NH2 group in aniline is o, p-directing and activating while the -NH3 group in anilinium ion is m-directing and deactivating.
Nitration of aniline mainly gives p-nitroaniline. On the other hand, the nitration of anilinium ion gives m-nitroaniline.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 10
Thus, nitration of aniline gives a substantial amount of m-nitroaniline due to protonation of the amino group.

(v) Aniline being a Lewis base, reacts with Lewis acid AlCl3 to form a salt.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 11
As a result, N of aniline acquires positive charge and hence, it acts as a strong deactivating group for electrophilic substitution reaction. Consequently, aniline does not undergo Friedel Crafts’ reaction.
(vi) The diazonium ion undergoes resonance as shown below:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 12
This resonance accounts for the stability of the diazonium ion. Hence, diazonium salts of aromatic amines are more stable than those of aliphatic amines.

(vii) Gabriel phthalimide synthesis results in the formation of 1° amine only. 2° or 3° amines are not formed in this synthesis. Thus, a pure 1° amine can be obtained. Therefore, Gabriel phthalimide synthesis is preferred for synthesizing primary amines.

Question 4.
Arrange the following:
(i) In decreasing order of the pKb values :
C2H5NH2, C6H5NHCH3, (C2H5)2NH and C6H5NH2
(ii) In increasing order of basic strength :
C6H5NH2, C6H5N(CH3)2, (C2H5)2NH and CH3NH2
(iii) In increasing order of basic strength :
(a) Aniline, p-nitroaniline andp-toluidine
(b) C6H5NH2, C6H5NHCH3, C6H5CH2NH2.
(iv) In decreasing order of basic strength in gas phase:
C2H5NH2,(C2H5)2NH,(C2H5)3N and NH3
(v) In increasing order of boiling point:
C2H5OH, (CH3)2NH, C2H5NH2
(vi) In increasing order of solubility in water :
C6H5NH2, (C2H5)2NH, C2H5NH2.
Answer:
(i) C6H5NH2 > C6H5NHCH3 > C2H5NH2 > (C2H5)2NH
(ii) C6H5NH2C6H5N(CH3)2 < CH3NH2 < (C2H5)2NH
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 13
(b) C6H5NH2 < C6H5NHCH3 < C6H5CH2NH2.
(iv) (C2H5)3N > (C2H5)2NH > C2H5NH2 > NH3.
(v) (CH3)2NH < C2H5NH2 < C2H5OH
(vi) C6H5NH2 < (C2H5)2NH < C2H5NH2.

Question 5.
How will you convert:
(i) Ethanoic acid into methanamine
(ii) Hexanenitrile into 1-amino pentane
(iii) Methanol to ethanoic acid
(iv) Ethanamine into methanamine
(v) Ethanoic acid into propanoic acid
(vi) Methanamine into ethanamine
(vii) Nitromethane into dimethylamine
(viii) Propanoic acid into ethanoic acid
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 14

PSEB 12th Class Chemistry Solutions Chapter 13 Amines 15

Question 6.
Describe a method for the identification of primary, secondary, and tertiary times. Also, write chemical equations of the reactions involved.
Answer:
Primary, secondary and tertiary amines can be identified and distinguished by Hmsberg’s test. In this test, the amines are allowed to react with Hinsberg’s reagent, benzene sulphonyl chloride (C6H5SO2Cl). The three types of amines react differently with Hinsbergs reagent. Therefore, they can be easily identified using Hinsberg’s reagent. Primary amines react with benzene sulphonyl chloride to form N-allyl benzene sulphonyl amide which is soluble in alkali.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 17
Due to the presence of a strong electron-withdrawing sulphonyl group in the sulphonamide, the H-atom attached to nitrogen can be easily released as proton. So, it is acidic and dissolves in alkali. Secondary amines react with Hinsberg’s reagent to give a sulphonamide which is insoluble in alkali.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 18
There is no H-atom attached to the N-atom in the sulphonamide. Therefore, it is not acidic and insoluble in alkali.
On the other hand, tertiary amines do not react with Hinsberg’s reagent at all.

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 7.
Write short notes on the following:
(i) Carbylamine reaction
(ii) Diazotisation
(iii) Hofmann’s bromamide reaction
(iv) Coupling reaction
(v) Ammonolysis
(vi) Acetylation
(vii) Gabriel phthalimide synthesis.
Answer:
(i) Carbylamine reaction: Carbylamine reaction is used as a test for the identification of primary amines. When aliphatic and aromatic primary amines are heated with chloroform and ethanolic potassium hydroxide, carbylamines (or isocyanides) are formed. These carbylamines have very unpleasant odours. Secondary and tertiary amines do not respond to this test.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 19
(ii) Diazotisation: Aromatic primary amines react with nitrous acid (prepared in situ from NaNO2 and a mineral acid such as HCl) at low temperatures (273-278 K) to form diazonium salts. This conversion of aromatic primary amines into diazonium salts is known as diazotization. For example, on treatment with NaNO2 and HCl at 273 – 278 K, aniline produces benzene diazonium chloride, with NaCl and H2O as by-products.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 20
(iii) Hofmann’s bromamide reaction: When an amide is treated with bromine in an aqueous or ethanolic solution of sodium hydroxide, a primary amine with one carbon atom less than the original amide is produced. This degradation reaction is known as Hofmann bromamide reaction. This reaction involves the migration of an alkyl or aryl group from the carbonyl carbon atom of the amide to the nitrogen atom.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 21
(iv) Coupling reaction: The reaction of joining two aromatic rings through the -N=N- bond is known as a coupling reaction. Arenediazonium salts such as benzene diazonium salts react with phenol or aromatic amines to form colored azo compounds.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 22
It can be observed that the para-positions of phenol and aniline are coupled with the diazonium salt. This reaction proceeds through electrophilic substitution.

(v) Ammonolysis: When an alkyl or benzyl halide is allowed to react with an ethanolic solution of ammonia, it undergoes nucleophilic substitution reaction in which the halogen atom is replaced by an amino (- NH2) group. This process of cleavage of the carbon-halogen bond is known as ammonolysis.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 23
When this substituted ammonium salt is treated with a strong base such as sodium hydroxide, amine is obtained.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 24
Though primary amine is produced as the major product, this process produces a mixture of primary, secondary and tertiary amines, and also a quaternary ammonium salt as shown.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 25
(vi) Acetylation: The process in which acetyl (CH3CO -) group is introduced in a molecule, is called acetylation, reagents used for this purpose are acetyl chloride or acetic anhydride.
(vii) Gabriel phthalimide synthesis: Gabriel phthalimide synthesis is a very useful method for the preparation of aliphatic primary amines.

It involves the treatment of phthalimide with ethanolic potassium hydroxide to form potassium salt of phthalimide. This salt is further heated with alkyl halide, followed by alkaline hydrolysis to yield the corresponding primary amine.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 26

(vii) Gabriel phthalimide synthesis: Gabriel phthalimide synthesis is a very useful method for the preparation of aliphatic primary amines. It involves the treatment of phthalimide with ethanolic potassium hydroxide to form potassium salt of phthalimide. This salt is further heated with an alkyl halide, followed by alkaline hydrolysis to yield the corresponding primary amine.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 27

Question 8.
Accomplish the following conversions:
(i) Nitrobenzene to benzolc acid
(ii) Benzene to m-bromophenol
(iii) Benzoic acid to aniline
(iv) Aniline to 2,4,6-tribromofluorobenzene
(v) Benzyl chloride to 2-phenylethanolamine
(vi) Chiorobenzene top-chloroaniline
(vii) Aniline top-bromoaniline
(viii) Benzainide to toluene
(ix) Aniline to benzyl alcohol.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 28
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 29
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 30

PSEB 12th Class Chemistry Solutions Chapter 13 Amines 31

PSEB 12th Class Chemistry Solutions Chapter 13 Amines 32
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 33
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 34
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 35
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 36

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 9.
Give the structures of A, B and C In the following reactions:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 37
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 38

Question 10.
An aromatic compound ‘A’ on treatment with aqueous ammonia and heating forms compound ‘B’ which on heating with Br2 and KOH forms a compound ‘C’ of molecular formula C6H7N. Write the structures and IUPAC names of compounds A, B, and C.
Answer:
It is given that compound ‘C’ having the molecular formula, C6H7 N is formed by heating compound ‘B’ with Br2 and KOH. This is a Hofmann bromamide degradation reaction. Therefore, compound ‘B’ is an amide, and compound ‘C’ is an amine. The only amine having the molecular formula, C6H7N is aniline, (C6H5NH2).
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 41
Therefore, compound ‘B’ (from which ‘C’ is formed) must be benzamide, (C6H5CONH2)

Further, benzamide is formed by heating compound ‘A’ with aqueous ammonia. Therefore, compound ‘A’ must be benzoic acid.

The given reactions can be explained with the help of the following equations:

Question 11.
Complete the following reactions:
(i) C6H5 NH2 + CHCl3 + alc.KOH →
(ii) C6H5N2Cl+H3PO2+H2O →
(iii) C6H5NH2 + H2SO4(conc.) →
(iv) C6H5N2Cl+C2H5OH →
(v) C6H5NH2+Br2(aq) ) →
(vi) C6H5NH2 + (CH3CO)2O →
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 45
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 46

Question 12.
Why cannot aromatic primary amines be prepared by Gabriel phthalimide synthesis?
Answer:
Gabriel phthalimide synthesis is used for the preparation of aliphatic primary amines. It involves nucleophilic substitution (SN2) of alkyl halides by the anion formed by the phthalimide.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 48
But aryl halides do not undergo nucleophilic substitution with the anion formed by the phthalimide.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 49
Hence, aromatic primary amines cannot be prepared by this process.

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 13.
Write the reactions of (i) aromatic and (ii) aliphatic primary amines with nitrous acid.
Answer:
(i) Aromatic amines react with nitrous acid (prepared in situ from NaNO2 and a mineral acid such as HCl) at 273 – 278 K to form stable aromatic diazonium salts i.e., NaCl and H2O.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 50
(ii) Aliphatic primary amines react with nitrous acid (prepared in situ from NaNO2 and a mineral acid such as HCl) to form unstable aliphatic diazonium salts, which further produce alcohol and HCl with the evolution of N2 gas.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 51

Question 14.
Give plausible explanation for each of the following:
(i) Why are amines less acidic than alcohols of comparable molecular masses?
(ii) Why do primary amines have higher boiling point than tertiary amines?
(iii) Why are aliphatic amines stronger bases than aromatic amines?
Answer:
(i) Amines are less acidic than alcohols of comparable molecular masses because N – H bond is less polar than O – H bond. Hence, amines release H+ ion with more difficulty as compared to alcohol.

(ii) Intermolecular hydrogen bonding is present in primary amines but not in tertiary amines (H-atom absent in amino group) so primary amines have higher boiling point than tertiary amines.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 52
(iii) Aliphatic amines are stronger bases than aromatic amines due to following reasons :
(a) Electron pair on the nitrogen atom of aromatic amines is involved in conjugation with the π-electron pairs of the ring as follows :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 53
(b) Anilinium ion obtained by accepting a proton is less stabilized by resonance.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 54
So, aniline is a weaker base than alkyl amines, in which the +1 effect increases the electron density on the nitrogen atom.

Chemistry Guide for Class 12 PSEB Amines Textbook Questions and Answers

Question 1.
Classify the following amines as primary, secondary or tertiary:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 55
(iii) (C2H5)2CHNH2
(iv) (C2H5)2NH
Answer:
(i) Primary
(ii) Tertiary
(iii) Primary
(iv) Secondary.

Question 2.
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N.
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Answer:
(i) and (ii)
Primary amines :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 56
Secondary amines:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 57
Tertiary amine:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 58
(iii) Chain isomers : (a) and (d), (b) and (c)
Position isomers : (a) and (b), (f) and (g)
Metamers : (e) and (f)
Functional isomers: All primary amines are functional isomers of secondary and tertiary amines and vice-versa.

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 3.
How will you convert:
(i) Benzene into Aniline ?
(ii) Benzene into N, N-Dimethylaniline
(iii) Cl-(CH2)4 -Cl into hexane-1, 6-diamine?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 59
(ii) Benzene is converted into aniline which can be subsequently heated with excess of methyl iodide under pressure to obtain N, N-dimethylaniline.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 60
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 61

Question 4.
Arrange the following in increasing order of their basic strength:
(i) C2H5NH2,C6H6NH2,NH3,C6H5CH2NH2,(C2H5)2NH
(ii) C2H5NH2, (C2H6)2NH, (C2H5)3N, C6H5NH2
(iii) CH3NH2, (CH3)2NH, (CH3)3N, C6H5NH2, C6H5CH2NH2
Answer:
(i) C6H5NH2 < NH3 < C6H5CH2NH2 < C2H5NH2< (C2H5)2NH
(ii) C6H5NH2 < C2H5NH2 < (C2H5)3N < (C2H5)2NH
(iii) C6H5NH2 < C6H5CH2NH2 < (CH3)3N < CH3NH2 < (CH3)2NH

Question 5.
Complete the following acid-base reactions and name the products:
(i) CH3CH2CH2NH2 + HCl →
(ii) (C2H5)3N + HCl →
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 62

Question 6.
Write reactions of the final alkylation product of aniline with excess of methyl iodide in the presence of sodium carbonate solution.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 63

Question 7.
Write the chemical reaction of aniline with benzoyl chloride and write the name of the product obtained.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 64

Question 8.
Write structures of different isomers corresponding to the molecular formula, C3H9N. Write IUPAC names of the isomers which will liberate nitrogen gas on treatment with nitrous acid.
Answer:
In all, four structural isomers are possible. These are as follows:
Primary amines :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 65
Secondary amInes :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 66
Tertiary amines :
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 67
Only primary amines react with HNO2 to liberate N2 gas.
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 69

PSEB 12th Class Chemistry Solutions Chapter 13 Amines

Question 9.
Convert:
(i) 3-Methylaniline into 3-nitrotoluene
(ii) Aniline into 1,3,5-tribromobenzene.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 70
PSEB 12th Class Chemistry Solutions Chapter 13 Amines 71

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 2 Solutions Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 2 Solutions

PSEB 12th Class Chemistry Guide Solutions InText Questions and Answers

Question 1.
Define the term solution. How many types of solutions are formed? Write briefly about each type with an example.
Answer:
Homogeneous mixtures of two or more than two components are known as solutions. Solute and solvent are two components of a solution.
There are three types of solutions.
(i) Gaseous solution: The solution in which the solvent is a gas is known as a gaseous solution. In these solutions, the solute may be liquid, solid, or gas. For example, a mixture of oxygen and nitrogen gas is a gaseous solution.

(ii) Liquid solution : The solution in which the solvent is a liquid is known as a liquid solution. In these solutions, the solute may be gas, liquid, or solid. For example, a solution of ethanol in water is a liquid solution.

(iii) Solid solution : The solution in which the solvent is a solid is known as a solid solution. In these solution, the solute may be gas, liquid or solid. For example, a solution of copper in gold is a solid solution.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 2.
Give an example of a solid solution in which the solute is a gas.
Answer:
In case a solid solution is formed between two substances (one having very large particles and the other having very small particles), an interstitial solid Solution will be formed. For example, a solution of hydrogen in palladium is a solid solution in which the solute is a gas.

Question 3.
Define the following terms:
(i) Mole fraction
(ii) Molality
(iii) Molarity
(iv) Mass percentage.
Answer:
(i) Mole fraction: The mole fraction of a component in a mixture is defined as the ratio of the number of moles of the component (solute or solvent) to the total number of moles of all the components in the mixture.
i.e., Mole fraction of a component
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 1
Mole fraction is denoted by ‘χ’
If in a binary solution, the number of moles of the solute and the solvent are nA and nB respectively, then the mole fraction of the solute in the solution is given by,
χA = \(\frac{n_{A}}{n_{A}+n_{B}}\)
Similarly, the mole fraction of the solvent in the solution is given as:
χA = \(\frac{n_{B}}{n_{A}+n_{B}}\)

(ii) Molality: Molality (m) is defined as the number of moles of the solute per kilogram of the solvent. It is expressed as:
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 2
Unit of molality is mol kg-1 or m (molal).

(iii) Molarity: Molarity (M) is defined as the number of moles of the solute dissolved in one litre of the solution.
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 3

(iv) Mass percentage: The mass percentage of a component of a solution is defined as the mass of the solute in grams present in 100 g of the solution.
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 4

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 4.
Concentrated nitric acid used in laboratory work is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the density of the solution is 1.504gmL -1?
Solution:
68% HNO3 by mass means
Mass of HNO3 (w) = 68 g
Mass of solution = 100 g
Molar mass of nitric acid (HN0),
(M) = 1 × 1 + 1 × 14 + 3 × l6 = 63g mol-1
Then, number of moles of HNO3 = \(\frac{W}{M}\) = \(\frac{68}{63}\) mol
= 1.079 mol
Density of solution = 1.504 g mL-1
∴ Volume of solution = \(\frac{\text { Mass }}{\text { Density }}\) = \(\frac{100}{1.504}\) mL
66.49 mL
66.49 × 10-3 L
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 5
= \(\frac{1.079 \mathrm{~mol}}{66.49 \times 10^{-3} \mathrm{~L}}\) = 16.23 mol L-1

Question 5.
A solution of glucose in water is labelled as 10% w/w, what would be the molality and mole fraction of each component in the solution? If the density of solution is 1.2 gmL-1, then what shall be the molarity of the solution?
Solution:
10% w/w solution of glucose means 10 g of glucose is present in 100 g of the solution i.e., 90 g of water.
Molar mass of glucose
(C6H12O6) = 6 × 12 + 12 × 1 + 6 × 16 = 180 g mol-1
Then, number of moles of glucose = \(\frac{10}{180}\)mol = 0.056 mol
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 6

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 6.
How many mL of 0.1 M HCl are required to react completely with lg mixture of Na2CO3 and NaHCO3 containing equimolar amounts of both?
Solution:
Let the mass of Na2CO3 = x g
Mass of mixture = 1.0 g
Then, the mass of NaHCO3 = (1 – x) g
Molar mass of Na2CO3 = 2 × 23 + 1 × 12 + 3 × 16 =106 g mol-1
∴ Number of moles of Na2CO3 = \(\frac{\text { Mass }}{\text { Molar mass }}\) = \(\frac{x}{106}\) = mol
Molar mass of NaHCO3 = 1 × 23 + 1 × 1 + 1 × 12 + 3 × 16 = 84g mol-1
∴ Number of moles of NaHCO3 = \(\frac{\text { Mass }}{\text { Molar mass }}\) = \(\frac{1-x}{84}\) mol
According to the question, the mixture contains equimolar amounts of Na2CO3and NaHCO3
Moles of Na2CO3 = Moles of NaHCO3
\(\frac{x}{106}=\frac{1-x}{84}\)
⇒ 84x =106 -106x
⇒ 190x =106
⇒ x = 0.5579 g
Thus, number of moles of Na2CO3 = \(\frac{0.5579}{106}\) mol = 0.0053 mol
Number of moles of NaHCO3 = \(\frac{1-0.5579}{84}\)mol = 0.0053 mol

To calculate the moles of HCl required
HCl reacts with Na2CO3 and NaHCO3 according to the following equations
2HCl + Na2CO3 → 2NaCl + H2O + CO2
HCl + NaHCO3 → NaCl + H2O + CO2;
1 mol of Na2CO3 reacts with 2 mol of HCl.
Therefore, 0.0053 mol of Na2CO3 reacts with 2 × 0.0053 mol = 0.0106 mol
Similarly, 1 mol of NaHCO3 reacts with 1 mol of HCl.
Therefore, 0.0053 mol of NaHCO3 reacts with 0.0053 mol of HCl.
Total moles of HCl required = (0.0106 + 0.0053) mol
= 0.0159 mol

To calculate the volume of 0.1 MHC1
0.1 mol of 0.1 M HCl present in 1000 mL of HCl
Therefore, 0.0159 mol of HCl will be present in HCl
= \(\frac{1000 \times 0.0159}{0.1}\) mol
= 159 mL

Question 7.
A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution.
Solution:
Mass of solute in I solution = \(\frac{25}{100}\) × 300 g = 75 g
Mass of solute in II solution = \(\frac{40}{100}\) × 400 g = 160 g
After mixing both solutions
Total mass of solute = 75 + 160 = 235 g
Total mass of solution = 300 + 400 = 700 g
Therefore, mass percentage (w/w) of the solute in the resulting solution
= \(\frac{235}{700}\) × 100%
= 33.57%
And, mass percentage (w/w) of the solvent in the resulting solution.
= (100 – 33.57)%
= 66.43%

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 8.
An antifreeze solution is prepared from 222.6 g of ethylene glycol (C2H6O2 ) and 200 g of water. Calculate the molality of the solution. If the density of the solution is 1.072 g mL ‘1, then what shall be the molarity of the solution?
Solution:
To calculate the molality of the solution
Molar mass of ethylene glycol (C2H6O2)
= 2 x 12 + 6 x 1 + 2 x 16 = 62 g mol-1
Mass of ethylene glycol = 222.6 g
Number of moles of ethylene glycol = \(\frac{\text { Mass of ethylene glycol }}{\text { Molar mass of ethylene glycol }}\)
= \(\frac{222.6 \mathrm{~g}}{62 \mathrm{~g} \mathrm{~mol}^{-1}}\) = 3.59 mol
Mass of water = 200 g = 0.2 kg
Therefore, molality of the solution \(=\frac{\text { No. of moles of ethylene glycol }}{\text { Mass of solvent in kg }}\)
= \(\frac{3.59 \mathrm{~mol}}{0.200 \mathrm{~kg}}\) = 17.95m

To calculate the molarity of the solution
Density of the solution = 1.072 g mL-1
Mass of solution = Mass of solute + Mass of solvent
222.6 g + 200 g = 422.6 g
∴ Volume of the solution = \(\frac{\text { Mass }}{\text { Density }}\) = \(\frac{422.6 \mathrm{~g}}{1.072 \mathrm{~g} \mathrm{~mL}^{-1}}\)
= 394.22 mL = 0.3942 x 10-3 L
⇒ Molarity of the solution = \(\frac{\text { Moles of ethylene glycol }}{\text { Volume of solution in litre }}\)
= \(\frac{3.59 \mathrm{~mol}}{0.3942 \times 10^{-3} \mathrm{~L}}\) = 9.1 M

Question 9.
A sample of drinking water was found to be severely contaminated with chloroform (CHCl3) supposed to be a carcinogen. The level of contamination was 15 ppm (by mass):
(i) express this in percent by mass
(ii) determine the molality of chloroform in the water sample.
Solution:
Let the mass of solution be 106 g.
Mass of solute, CHCl3 = 15 g

(i) Therefore, percent by mass of CHCl3 = \(\frac{\text { Mass of } \mathrm{CHCl}_{3}}{\text { Mass of solution }}\) × 100%
\(\frac{15}{10^{6}}\) × 100%
= 1.5 × 10-3%

(ii) Molar mass of chloroform (CHCl3 ) = 1 × 12 + 1 × 1 + 3 × 35.5
= 119.5g mol-1
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 7
= \(\frac{\frac{15}{119.5} \mathrm{~mol}}{10^{6} \times 10^{-3} \mathrm{~kg}}\) = 1.26 × 10 4 mol-4 kg-1
1.26 × 10-4 m

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 10.
What role does the molecular interaction play in a solution of alcohol and water?
Answer:
In pure alcohol and water, the molecules are held tightly by a strong hydrogen bonding. The interaction between the molecules of alcohol and water is weaker than alcohol-alcohol and water-water interactions. As a result, when alcohol and water are mixed, the intermolecular interactions become weaker and the molecules can easily escape. This increases the vapour pressure of the solution, which in turn lowers the boiling point of the resulting solution.

Question 11.
Why do gases always tend to be less soluble in liquids as the temperature is raised?
Answer:
Solubility of gases in liquids decreases with an increase in temperature. This is because dissolution of gases in liquids is an exothermic process.
Gas + Liquid → Solution + Heat
Therefore, when the temperature is increased, heat is supplied and the equilibrium shifts backwards, thereby decreasing the solubility of gases.

Question 12.
State Henry’s law and mention some important applications?
Answer:
Henry’s law states that partial pressure of a gas in the vapour phase is proportional to the mole fraction of the gas in the solution. If p is the partial pressure of the gas in the vapour phase and % is the mole fraction of the gas, then Henry’s law can be expressed as:
P = K
Where, KH is Henry’s law constant

Some important applications of Henry’s law are mentioned below:
(i) Bottles are sealed under high pressure to increase the solubility of C02 in soft drinks and soda water.

(ii) Henry’s law states that the solubility of gases increases with an increase in pressure. Therefore, when a scuba diver dives deep into the sea, the increased sea pressure causes the nitrogen present in air to dissolve in his blood in great amounts. As a result, when he comes back to the surface, the solubility of nitrogen again decreases and the dissolved gas is released, leading to the formation of nitrogen bubbles in the blood. This results in the blockage of capillaries and leads to a medical condition known as “bends’ or ‘decompression sickness’. Hence, the oxygen tanks used by scuba divers are filled with air and diluted with helium to avoid bends.

(iii) The concentration of oxygen is low in the blood and tissues of people living at high altitudes such as climbers. This is because at high altitudes, partial pressure of oxygen is less than that at ground level. Low-blood oxygen causes climbers to become weak and disables them from thinking clearly. These are symptoms of anoxia.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 13.
The partial pressure of ethane over a solution containing 6.56 × 10-3g of ethane is 1 bar. If the solution contains 5.00 × 10-2 g of ethane, then what shall be the partial pressure of the gas?
Solution:
According to Henry’s law the mass of the gas dissolved in solution x Partial pressure (p) (At constant temperature)
(6.56 × 10-3g) ∝ 1 bar
(5.00 × 10-2g) ∝ p
or p = \(\frac{5.0 \times 10^{-2} \mathrm{~g}}{6.56 \times 10^{-3} \mathrm{~g}}\) × 1 bar = 7.62 bar

Question 14.
What is meant by positive and negative deviations from Raoult’s law and how is the sign of Δmix H related to positive and negative deviations from Raoult’s law?
Answer:
Positive deviation: ‘When the vapour pressure of a solution is higher than the predicted value by Raoult’s law, it is called positive deviation’. In such cases intermolecular interactions between solute and solvent particles (A and B) are weaker than those between solute-solute (A – A) and solvent-solvent (B – B). Hence, the molecules of (A or B) will escape more easily from the surface of solution than in their pure state. Therefore, the vapour pressure of the solution will be higher. Characteristics of a solution showing positive deviation :
(i) PA > \(p_{A}^{0}\) χA; PB > \(p_{B}^{0}\) χB
(ii) ΔHmix >0;i.e., + ve
(iii) ΔVmix > 0, i.e., + ve

Examples of solutions showing positive deviation:
(i) Ethyl alcohol and water
(ii) Acetone and carbon disulphide
(iii) Carbon tetrachloride and benzene
(iv) Acetone and benzene
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 8
Negative deviation: “When the vapour pressure of a solution is lower than the predicted value by Raoult’s law, it is called negative deviation.’ In case of negative deviation the intermolecular attractive forces between A – A and B – B are weaker than those between A – B. It leads to decrease in vapour pressure resulting in negative deviation.

Characteristics of a solution showing negative deviation:
(i) PA < \(p_{A}^{0}\) χB; PB < \(p_{B}^{0}\) χB
(ii) ΔVmix < 0; i. e., – ve; because weak A – A and B – B bonds are broken
and strong A – B bonds are formed. Heat is consequently released.
(iii) mix<0;i.e.,-ve

Examples of solutions showing negative deviation:
(i) HNO3 and water
(ii) Chloroform and acetone
(iii) Acetic acid and pyridine
(iv) Hydrochloric acid and water

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 15.
An aqueous solution of 2% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?
Solution:
Here,
Vapour pressure of the solution at normal boiling point (p1) = 1.004 bar
Vapour pressure of pure water at normal boiling point (\(p_{1}^{0}\)) = 1.013 bar
Mass of solute, (w2) = 2 g
Mass of solvent (water), (w1 ) = 100 – 2 = 98g
Molar mass of solvent (water), (M1) = 18 g mol-1
Molar mass of solute (M2) = ?
According to Raoult’s law,
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 9
Hence, the molar mass of the solute is 41.35 g mol-1.

Question 16.
Heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components are 105.2 kPa and 46.8 kPa respectively. What will be the vapour pressure of a mixture of 26.0 g of heptane and 35 g of octane?
Solution:
Vapour pressure of heptane (\(p_{1}^{0}\)) = 105.2 kPa
Vapour pressure of octane (p\(p_{2}^{0}\)) = 46.8 kPa
Mass of heptane = 26.0 g
Mass of octane = 35 g
Molar mass of heptane (C7H16) = 7 × 12 + 16 × 1 = 100 g mol-1;
∴ Number of moles of heptane = \(\frac{26}{100}\) mol = 0.26 mol
Molar mass of octane (C8H18) = 8 × 12 + 18 × 1 = 114g mol-1
∴ Number of moles of octane = \(\frac{35}{114}\) mol = 0.31 mol
Mole fraction of heptane, χ1 = \(\frac{0.26}{0.26+0.31}\) = 0.456
Mole fraction of octane, χ2 = 1 – 0.456 = 0.544
Now, partial pressure of heptane, p1 = χ1 \(p_{1}^{0}\)
= 0.456 × 105.2 = 47.97 kPa
Partial pressure of octane, p2 = χ2\(p_{2}^{0}\)
= 0.544 × 46.8 = 25.46 kPa
Hence, vapour pressure of solution, ptotal = P1 + p2
= 47.97 + 25.46 = 73.43 kPa

Question 17.
The vapour pressure of water is 12.3 kPa at 300 K. Calculate vapour pressure of 1 molal solution of a non-volatile solute in it.
Solution:
1 molal solution means 1 mol of the solute is present in 1000 g of the solvent (water).
Molar mass of water = 18 g mol-1
> Number of moles present in 1000 g of water = \(\frac{1000}{18}\) = 55.56 mol
Therefore, mole fraction of the solute
χ2 = \(\frac{1}{1+55.56}\) = 0.0177
It is given that,
Vapour pressure of water, \(p_{1}^{0}\) = 12.3 kPa
∴ \(\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}\) = χ2
Applying the relation,
⇒ \(\frac{12.3-p_{1}}{12.3}\) = 0.0177
⇒ 12.3 – p1 = 0.0177 × 12.3
⇒ 12.3 -P1 = 0.2177
⇒ P1 = 12.3 – 0.2177
⇒ p1 = 12.0823
= 12.08 kPa
Hence, the vapour pressure of the solution is 12.08 kPa.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 18.
Calculate the mass of a non-volatile solute (molar mass 40 g mol-1) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
Solution:
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 10
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 11

Question 19.
A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of 2.8 kPa at 298 K. Further, 18 g of water is then added to the solution and the new vapour pressure becomes 2.9 kPa at 298 K. Calculate :
(i) molar mass of the solute
(ii) vapour pressure of water at 298 K.
Solution:
(i) Let, the molar mass of the solute be M g mol-1
Now, the no. of moles of solvent (water), = n1 = \(\frac{\text { Mass }}{\text { Molar mass }}\)
= \(\frac{90 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}\) = 5mol
And, the no. of moles of solute, n2 = \(\frac{\text { Mass }}{\text { Molar mass }}\)
= \(\frac{30 \mathrm{~g}}{\mathrm{Mg} \mathrm{mol}^{-1}}=\frac{30}{M}\) mol
Vapour pressure of I solution
p1 = 2.8 kPa
According to Raoult’s law
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 12
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 13
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 14

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 20.
A 5% solution (by mass) of cane sugar in water has freezing point of 271 K. Calculate the freezing point of 5% glucose in water if freezing point of pure water is 273.15 K.
Solution:
Let the mass of solution = 100 g
∴ Mass of cane sugar (w2) = 5 g
ΔTf = (273.15 – 271) K = 2.15 K
Molar mass of cane sugar (C12H22O11), (M2) = 12 x 12 + 22 x 1 +11 x 16
= 342 g mol-1
Mass of solvent (water), (w1) = 100 – 5 = 95 g
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 15
(Molar mass of glucose = 180 g mol-1)
ΔTf = 4.08 K
Freezing point of glucose solution
Tf = \(T_{f}^{0}\) – ΔTf = 273.15 – 4.08 = 269.07 K

Question 21.
Two elements A and B form compounds having formula AB2 and AB4. When dissolved in 20 g of benzene (C6H6, 1 g of AB2 lowers the freezing point by 2.3 K whereas 1.0 g of AB4 lowers it by 1.3 K. The molar depression constant for benzene is 5.1 K kg mol-1. Calculate atomic masses of A and B.
Solution:
We know,
M2 = \(\frac{1000 \times w_{2} \times K_{f}}{\Delta T_{f} \times w_{1}}\)
Then MAB2 = \(\frac{1000 \times 1 \times 5.1}{2.3 \times 20}\) = 110.87 g mol-1
Then MAB2 = \(\frac{1000 \times 1 \times 5.1}{1.3 \times 20}\) = 196.15 g mol-1
Let the atomic masses of A and B be x and y respectively.
Molar mass of AB2 = x + 2 y = 110.87 …………… (i)
Molar mass of AB4 = x + 4y = 196.15 ………… (ii)
Subtracting equation (i) from (ii) , we get
2y=85.28 y = 42.64
Putting the value of ‘/ in equation (i), we get
x + 2 x 42.64 = 110.87
⇒ x = 25.59
Hence, the atomic masses of A and B are 25.59 u and 42.64 u respectively.

Question 22.
At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?
Solution:
Here, T = 300 K, π = 1.52 bar, R = 0.083 bar L K-1mol-1
Applying the relation, π = CRT
⇒ C = \(\frac{\pi}{R T}\)
= \(\frac{1.52 \mathrm{bar}}{0.083 \mathrm{bar} \mathrm{L} \mathrm{K}^{-1} \mathrm{~mol}}\)
= 0.061 mol
Since, the volume of the solution is 1 L, the concentration of the solution would be 0.061 M.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 23.
Suggest the most important type of intermolecular attractive interaction in the following pairs. .
(i) n-hexane and n-octane
(ii) I2 and CCl4
(iii) NaClO4 and water
(iv) methanol and acetone
(v) acetonitrile (CH3CN) and acetone (C3H6O).
Answer:
(i) Van der Wall’s forces of attraction. (London forces)
(ii) Van der Wall’s forces of attraction. (London forces) .
(iii) Ion-dipole interaction. ‘
(iv) Dipole-dipole interaction.
(v) Dipole-dipole interaction.

Question 24.
Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain. Cyclohexane, KCl, CH3OH, CH3CN.
Answer:
(i) Cyclohexane and n-octane both are non-polar.
So, they will mix completely in all proportions.
(ii) KCl is an ionic compound, but n-octane is non-polar.
So, KCl will not dissolve in n-octane.
(iii) CH3OH and CH3CN both are polar but CH3CN is less polar than CH3OH. As the solvent is non-polar CH3CN will dissolve more than CH3OH in n-octane.
Therefore, the order of solubility in n-octane will be KCl < CH3OH < CH3CN < Cyclohexane

Question 25.
Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water?
(i) phenol
(ii) toluene
(iii) formic acid
(iv) ethylene glycol
(v) chloroform
(vi) pentanol.
Answer:
(i) Phenol (C6H5OH) has the polar group -OH and non-polar group -C6H5. Thus, phenol is partially soluble in water.

(ii) Toluene (C6H5 – CH3) has no polar groups. Thus, toluene is insoluble in water.

(iii) Formic acid (HCOOH) has the polar group -OH and can form H-bond with water. Thus, formic acid is highly soluble in water.

(iv) Ethylene glycol PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 16 has polar -OH group and can form H-bond. Thus, it is highly soluble in water.
(v) Chloroform is insoluble in water because it cannot form hydrogen bonds with water.

(vi) Pentanol (C5H11OH) has polar -OH group, but it also contains a very bulky non-polar -C5H11 group. Thus, pentanol is partially soluble in water.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 26.
If the density of some lake water is 1.25 g mL-1 and contains 92 g of Na+ ions per kg of water, calculate the molality of Na+ ions in the lake.
Solution:
Number of moles present in 92 g of Na+ ions
= \(\frac{92 \mathrm{~g}}{23 \mathrm{~g} \mathrm{~mol}^{-1}}\) = 4 mol
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 17
= \(\frac{4 \mathrm{~mol}}{1 \mathrm{~kg}}\) = m

Question 27.
If the solubility product of CuS is 6 × 1016, calculate the maximum molarity of CuS in aqueous solution.
Solution:
Solubility product of CuS, Ksp = 6 × 10-16 .
Let s be the solubility of CuS in mol L-1. Then,
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 18
= s × s
= s2
Then we have, K sp s2 = 6 × 10-16
⇒ s = \(\sqrt{6 \times 10^{-16}}\)
= 2.45 x 10-8 mol-1
Hence, the maximum molarity of CuS in an aqueous solution is 2.45 × -8 mol-1.

Question 28.
Calculate the mass percentage of aspirin (C9H8O4) in
acetonitrile (CH3CN) when 6.5 g of C9H8O4 is dissolved in 450 g of CH3CN.
Solution:
Mass of aspirin = 6.5 g
Mass of acetonitrile = 450 g
Then, total mass of the solution = (6.5 + 450) g = 456.5 g
Therefore, mass percentage of C9H8O4 = \(\frac{6.5}{456.5}\) × 100%
= 1.424%

Question 29.
Nalorphene (C19H21NO3), similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 mg. Calculate the mass of 1.5 × 10-3 m aqueous solution required for the above dose.
Solution:
1.5 × 10-3 m solution means that 1.5 × 10-3 mole of nalorphene is dissolved in 1 kg of water.
Molar mass of C19H21N03
= 19 × 12 + 21 + 14 + 48
= 311 g mol-1
∴ 1.5 × 10-3 mole of nalorphene
= 1.5 × 10-3 × 311 g = 0.467 g
= 467 mg
Mass of solution
= 1000 g + 0.467 g
= 1000.467 g
Thus, for 467 mg of nalorphene solution required 1000.467.
For 1.5 mg nalorphene = \(\frac{1000.467 \times 1.5}{467}\) = 3.21 g

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 30.
Calculate the amount of benzoic acid (C6H5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
Solution:
Molarity = 0.15 M or 0.15 mol L-1
Volume of solution = 250 mL = 0.25 L
Molar mass of benzoic acid (C6H5COOH) = 7 × 12 + 6 × 1 + 2 × 16
= 122 g mol-1
Molality \(\frac{\text { Mass }}{\text { Molar mass }}\) × \(\frac{1}{\text { Volume (L) }}\)
0.15 mol L-1 = \(\frac{w}{122 \mathrm{~g} \mathrm{~mol}^{-1}}\) × \(\frac{1}{0.25 \mathrm{~L}}\)
Mass of solute = (0.15 × 122 × 0.25) g = 4.575 g

Question 31.
The depression in freezing point of water observed for the same amount of acetic acid, trichloroacetic acid and trifluoroacetic acid increases in the order given above. Explain briefly.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 19
Among H, Cl, and F, H is least electronegative while F is most electronegative. Then, F can withdraw electrons towards itself more than Cl and H. Thus, trifluoroacetic acid can easily lose H+ ions i.e., trifluoroacetic acid ionises to the largest extent. Now, the more ions produced, the greater is the depression of the freezing point. Hence, the depression in the freezing point increases in the order:
Acetic acid < trichloroacetic acid < trifluoroacetic acid

Question 32.
Calculate the depression in the freezing point of water when 10 g of CH3CH2CHClCOOH is added to 250 g of water, Ka = 1.4 × 10-3, Kf = 1.86 K kg mol-1.
Solution:
Mass of solute (CH3CH2CHClCOOH) = 10 g
Molar mass of
CH3CH2CHClC00H = 4 × 12 + 7 × 1 + 1 × 35.5 + 2 × 16 = 48 + 7 + 35.5 + 32
= 122.5 g mol-1
\frac{\text { Mass / Molar mass }}{\text { Mass of solvent (Kg) }} = \(\frac{\text { Mass / Molar mass }}{\text { Mass of solvent (Kg) }}[latex/latex]
= [latex]\frac{10 \mathrm{~g}}{\left(122.5 \mathrm{~g} \mathrm{~mol}^{-1}\right) \times(0.25 \mathrm{Kg})}\)
= 0.326 m
Let α be the degree of dissociation of CH3CH2CHClCOOH then
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 20
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 21
Total no. of moles after dissociation = 1 – α + α + α
= 1 + α
Van’t Hoff factor
Total no. of moles after dissociation
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 22
∴ i = \(\frac{1+\alpha}{1}\)
= 1 + α
= 1 + 0.0655
= 1.0655
Hence, the depression in the freezing point of water is given as:
ΔTf = i.Kfm
= 1.0655 × 1.86 kg mol-1 × 0.326 mol kg-1
= 0.65K

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 33.
19.5 g of CH2FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.0°C. Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.
Solution:
Calculation of Van’t Hoff factor (i)
Given, w1 = 500 g = 0.5 kg, w2 = 19.5 g, Kf = 1.86 K kg mol-1, ΔTf = 1 K
Molar mass of CH2FCOOH (M2)
= 2 × 12 + 3 × 1 + 1 × 19 + 2 × 16
= 24 + 3 + 19 + 32
= 78 g mol-1
ΔTf = i Kf m
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 23
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 24

Question 34.
Vapour pressure of water at 293 K is 17.535 mm Hg. Calculate the vapour pressure of water at 293 K when 25 g of glucose is dissolved in 450 g of water.
Solution:
Vapour pressure of water, \(\) = 17.535 mm Hg
Mass of glucose, w2 = 25 g
Mass of water, w1 = 450 g
Molar mass of glucose (C6H12O6), M2 = 6 × 12 + 12 × 1 + 6 × 16
= 180 g mol-1
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 25
we know that
\(\frac{p_{1}^{0}-p_{1}}{p_{1}^{0}}\) = \(\frac{n_{2}}{n_{2}+n_{1}}\)
⇒ \(\frac{17.535-p_{1}}{17.535}\) = \(\frac{0.139}{0.139+25}\)
⇒ 17.535 – p1 = \(\frac{0.139 \times 17.535}{25.139}\)
⇒ 17.535 – p1 = 0.097
⇒ P1 = 17.44 mm Hg
Hence, the vapour pressure of water is 17.44 mm Hg.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 35.
Henry’s law constant for the molality of methane in benzene at 298 K is 4.27 x 105 mm Hg. Calculate the solubility of methane in benzene at 298 K under 760 mm Hg.
Solution:
Here, p = 760 mm Hg, KH = 4.27 × 105 mm Hg (at 298 K)
According to Henry’s law, p = K
χ = \(\frac{p}{k_{\mathrm{H}}}\)
= \(\frac{760 \mathrm{~mm} \mathrm{Hg}}{4.27 \times 10^{5} \mathrm{~mm} \mathrm{Hg}}\)
= 177.99 × 10-5
= 178 × 10-5
Hence, the mole fraction of methane in benzene is 178 × 10-5.

Question 36.
100 g of liquid A (molar mass 140 g mol-1) was dissolved in 1000 g of liquid B (molar mass 180 g mol-1). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 Torr.
Solution:
Number of moles of liquid A, nA = \(\frac{w_{1}}{M_{1}}\) = \(\frac{100}{140}\) mol = 0.714 mol
Number of moles of liquid B,nB = \(\frac{w_{2}}{M_{2}}\) = \(\frac{1000}{180}\) mol = 5.556 mol
Then, mole fraction of A, χA = \(\frac{n_{A}}{n_{A}+n_{B}}\)
= \(\frac{0.714 \mathrm{~mol}}{(0.714+5.556) \mathrm{mol}}\) = 0.114
Mole fraction of B, χB = 1 – 0.114 = 0.886
Vapour pressure of pure liquid B, \(p_{B}^{0}\) = 500 torr
Therefore, vapour pressure of liquid B in the solution,
PB = \(p_{B}^{0}\)χB
= 500 × 0.886
= 443 torr
Total vapour pressure of the solution, ptotal = 475 torr
∴ Vapour pressure of liquid A in the solution,
PA = Ptotal – PB
= 475 – 443 = 32 torr
Now, PA = \(p_{A}^{0}\)χA
⇒ \(\frac{p_{A}}{\chi_{A}}\) = \(\frac{32}{0.114}\)
= 280.7 torr
Hence, the vapour pressure of pure liquid A is 280.7 torr.

Question 37.
Vapour pressures of pure acetone and chloroform at 328 K are 741.8 mm Hg and 632.8 nun Hg respectively. Assuming that they form ideal solution over the entire range of composition, plot
Ptotal’ Pchloroform and Pacetone as a function of xacetone experimental data observed for different compositions of mixture is
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 26
Plot this data also on the same graph paper. Indicate whether it has positive deviation or negative deviation from the ideal
solution.
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 27
It can be observed from the graph that the plot for the ptotai of the solution curves downwards. Therefore, the solution shows negative deviation from the ideal behaviour.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 38.
Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively.
Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.
Solution:
Molar mass of benzene (C6H6) = 6 × 12 + 6 × 1 = 78g mol-1
Molar mass of toluene (C6H5CH3 ) = 7 × 12 + 8 × 1 = 92 g mol-1
No. of moles present in 80 g of benzene = \(\frac{80}{78}\) mol = 1.026 mol
No. of moles present in 100 g of toluene = \(\frac{100}{92}\) mol = 1.087 mol
Mole fraction of benzene, χC6H6, = \(\frac{1.026}{1.026+1.087}\) = 0.486
∴ Mole fraction of toluene,χC6H5CH35013 = 1 – 0.486 = 0.514
It is given that vapour pressure of pure benzene, \(p_{\mathrm{C}_{6} \mathrm{H}_{6}}^{0}\) = 50.71 mm Hg
Vapour pressure of pure toluene, \(p_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}^{0}\) = 32.06 mm Hg
Therefore, partial vapour pressure of benzene,
Ptotal = χC6H6 × \(p_{\mathrm{C}_{6} \mathrm{H}_{6}}^{0}\)
= 0.486 × 50.71
= 24.645 mm Hg
Partial vapour pressure of toluene, PC6H5CH3 = χC6H5CH3 × \(P_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}^{0}\)
= 0.514 × 32.06
= 16.479 mm Hg
Total vapour pressure of solution (p) = 24.645 + 16.479
= 41.124 mm Hg
Mole fraction of benzene in vapour phase
= \(\frac{\chi_{\mathrm{C}_{6} \mathrm{H}_{6}} \times p_{\mathrm{C}_{6} \mathrm{H}_{6}}^{0}}{p_{\text {total }}}\)
= \(\frac{0.486 \times(50.71) \mathrm{mm}}{(41.124) \mathrm{mm}}\)
= 0.599 ≅ 0.6

Question 39.
The air is a mixture of a number of gases. The mqjor components are oxygen and nitrogen with approximate proportion of 20% is to 79% by volume at 298 K. The water is in equilibrium with air at a pressure of 10 atm. At 298 K if the Henry’s law constants for oxygen \md nitrogen are 330 × 107 mm and 6.51 × 107 mm respectively, calculate the composition of these gases in water.
Solution:
Percentage of oxygen (O2) in air = 20%
Percentage of nitrogen (N2) in air = 79%
Also, it is given that water is in equilibrium with air at a total pressure of 10 atm that is, (10 × 760) mm = 7600 mm
Therefore, partial pressure of oxygen,
PO2 = \(\frac{20}{100}\) x 7600 mm
= 1520 mm Hg
Partial pressure of nitrogen, pN2 = \(\frac{79}{100}\) x 7600 mm
= 6004 mm Hg
Now, according to Henry’s law,
p = KH.χ
For oxygen:
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 28
\(\frac{6004 \mathrm{~mm}}{6.51 \times 10^{7} \mathrm{~mm}}\)
(Given KH = 6.51 × 107 mm)
= 9.22 × 10-5
Hence, the mole fractions of oxygen and nitrogen in water are 4.61 × 10-5 and 9.22 × 10-5 respectively.

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 40.
Determine the amount of CaCl2 (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.
Solutio:
We know that,
π = i \(\)RT
⇒ π = i \(\)RT
⇒ w = \(\)
Given,
π = 0.75 atm
V = 2.5L
i = 2.47
T = (27 + 273)K = 300K
R = 0.0821 L atm K-1mol
Molar mass of CaCl2(M) = 1 × 40 + 2 × 35.5 = 111 g mol -1
Therefore, w = \(\frac{0.75 \times 111 \times 2.5}{2.47 \times 0.0821 \times 300}\) = 3.42g
Hence the required amount of CaCl2 is3.42g

Question 41.
Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 litre of water at 25° C, assuming that it is completely dissociated.
Solution:
When K2SO4 is dissolved in water, K+ and \(\mathrm{SO}_{4}^{2-}\) ions are produced.
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 29
Total number of ions produced = 3
∴ i = 3
Given, w = 25 mg = 0.025 g, V = 2 L
T = 25°C = (25 + 273) K = 298 K
Also, we know that R = 0.0821 L atm K-1 mol-1
Molar Mass of K2SO4 (M) = (2 × 39) + (1 × 32) + (4 × 16) = 174 g mol-1
Applying the following relation,
π = i \(\frac{n}{V}\) RT = i \(\frac{w}{M} \frac{1}{V}\) RT
= 3 × \(\frac{0.025}{174}\) × 1 × 0.0821 × 298 = 5.27 × 10-3 atm

Chemistry Guide for Class 12 PSEB Solutions Textbook Questions and Answers

Question 1.
Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.
Solution:
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 30
Alternatively,
Mass percentage of CCl4 = (100 – 15.28)% = 84.72%

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 2.
Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.
Solution:
Let the total mass of the solution be 100 g and the mass of benzene be 30 g.
∴ Mass of carbon tetrachloride = (100 – 30) g = 70 g
Molar mass of benzene (C6H6) = (6 × 12 + 6 × 1) g
∴ mol-1 = 78 g mol-1
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 31

Question 3.
Calculate the molarity of each of the following solutions:
(a) 30 g of CO(NO3) 2.6H2O in 4.3 L of solution
(b) 30 mL of 0.5 M H2SO4diluted to 500 mL.
Solution:
Molarity is given by
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 32
(a) Molar mass of CO (NO3)2.6H2O = 59 + 2 (14 + 3 × 16) + 6 × 18
= 291 g mol-1
∴ Moles of Co (NO3)2.6H2O = \(\frac{30}{291}\) mol = 0.103 mol
Volume of solution = 4.3 L
Therefore, molarity = \(\frac{0.103 \mathrm{~mol}}{4.3 \mathrm{~L}}\) = 0.023 M

(b) Number of moles present in 1000 mL of 0.5 M H2SO4 = 0.5 mol
∴ Number of moles present in 30 mL of 0.5 M H2SO4
= \(\frac{0.5 \times 30}{1000}\) mol
= 0.015 mol
Volume of solution = 500 mL = 0.5 L
Therefore, molarity = \(\frac{0.015}{0.5 \mathrm{~L}}\) mol = 0.03M

Question 4.
Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.
Solution:
Mass of required aqueous solution = 2.5 kg = 2500 g
Molar mass of urea (NH2CONH2) = 2 (1 × 14 + 2 × 1) + 1 × 12 +1 × 16
= 60 g mol-1
0.25 molal aqueous solution of urea means 0.25 mole of urea is dissolved in 1000 g of water.
Mass of water = 1000 g
Moles of urea = 0.25 mol
Mass of urea = No. of moles of urea × Molar mass of urea
∴ Mass of 0.25 moles of urea = 0.25 × 60 = 15 g
Mass of solution = 1000 + 15 = 1015 g
1015 g of aqueous solution contains urea = 15 g
∴ 2500 g of aqueous solution will require urea
= \(\frac{15 g}{1015 g}\) × 2500 g = 36.95 g

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 5.
Calculate (a) molality (b) molarity and (c) mole fraction of KI. If the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.
Solution:
(a) Molar mass of KI = 39 +127 = 166 g mol-1
20% (mass/mass) aqueous solution of KI means 20 g of KI is present in 100 g of solution.
∴ 20 g of KI is present in (100 – 20) g of water = 80 g of water
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 33
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 34

Question 6.
H2S, a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of H2S in water at STP is 0.195 m, calculate Henry’s law constant.
Solution:
It is given that the solubility of H2S in water at STP is 0.195 m, i.e., 0.195 mol of H2S is dissolved in 1000 g of water.
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 35

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 7.
Henry’s law constant for CO2 in water is 1.67 × 108 Pa at 298 K.
Calculate the quantity of CO2 in 500 mL of soda water when packed under 2.5 atm COa pressure at 298 K.
Solution:
Given, KH = 1.67 × 108 Pa, pCO2 = 2.5 atm = 2.5 × 105 Pa
According to Henry’s law
pCO2 = KHχCO2 = \(\frac{P_{\mathrm{CO}_{2}}}{K_{\mathrm{H}}}\)
\(\frac{2.5 \times 10^{5}}{1.67 \times 10^{8}}\) = 1.5 × 10-3 ……….. (i)
Mass of water = Density of water × Volume of water
= 1 g/mL × 500 mL = 500 g
Number of moles of water, (nH2O)
= \(\frac{\text { Mass of water }}{\text { Molar mass }}=\frac{500 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}\)
= 27.78 mol
χCO2 = \(\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}+n_{\mathrm{CO}_{2}}}=\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}}\)
⇒ nCO2 = χCO2nH2O
= 1.5 × 10-3 × 27.78 mol
= 41.67 × 10-3 mol
Mass of CO2 = No. of moles of CO2 × Molar mass
= 41.67 × 10-3 × 44 =1.834 g

Question 8.
The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K. Find out the composition of the liquid mixture if total vapour pressure is 600 mm Hg. Also find the composition of the vapour phase.
Solution:
Given, p\(p_{A}^{0}\) = 450 mm Hg, \(p_{B}^{0}\) = 700 mm Hg,
Ptotal = 600 mm Hg
According to Raoult’s law
PA = \(p_{A}^{0}\)χA
PB = \(p_{B}^{0}\)χB – \(p_{A}^{0}\) (1 – χA )

Therefore, total pressure, ptotal = pA + pB
⇒ ptotal = \(p_{A}^{0}\)χA + \(p_{B}^{0}\) (1 – χA)
⇒ ptotal = \(p_{A}^{0}\)χA + \(p_{B}^{0}\) – \(p_{B}^{0}\)χA
⇒ ptotal = \(p_{A}^{0}\) – \(p_{B}^{0}\) χA + \(p_{B}^{0}\)
⇒ 600 = (450 – 700)χA + 700
⇒ -100 = -250χA
⇒ χA = 0.4
Mole fraction of A (χA) = 0.4
Mole fraction of B (χB) = 1 – 0.4 = 0.6
Now, PA = PAχA = 450 × 0.4
= 180 mm Hg
PB = \(p_{B}^{0}\)χB
= 700 × 0.6
= 420 mm Hg
Now, in the vapour phase:
Mole fraction of liquid A = \(\frac{p_{A}}{p_{A}+p_{B}}\)
\(\frac{180}{180+420}=\frac{180}{600}\) = 0.30
And, mole fraction of liquid B = 1 – 0.30 = 0.70

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 9.
Vapour pressure of pure water at 298 K is 23.8 mm Hg. 50 g of urea (NH2CONH2) dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.
Solution:
Given, vapour pressure of water, \(p_{1}^{0}\) = 23.8 mm Hg
Weight of water w1, = 850 g
Weight of urea, w2 = 50 g
Molecular weight of water, M1 = 18 g mol-1
Molecular weight of urea, M2 = 60 g mol-1

Now, we have to calculate vapour pressure of water in the solution. We take vapour pressure as p1.
Now, from Raoult’s law, we have
PSEB 12th Class Chemistry Solutions Chapter 2 Solutions 36

Question 10.
Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose is to be added to 500 g of water such that it boils at 100°C.
Solution:
Here, elevation in boiling point ΔTb = (100 + 273) – (99.63 + 273)
= 0.37 K
Mass of water, w1 = 500 g
Molar mass of sucrose (C12H22O11), M2 = 12 × 12 + 22 × 1 + 11 × 16
= 342 g mol-1
Molal elevation constant, Kb = 0.52 K kg mol-1
We know that,
ΔTb = \(\frac{K_{b} \times 1000 \times w_{2}}{M_{2} \times w_{1}}\)
⇒ w2 = \(\frac{\Delta T_{b} \times M_{2} \times w_{1}}{K_{b} \times 1000}\)
= \(\frac{0.37 \times 342 \times 500}{0.52 \times 1000}\)
= 121.67 g
Hence, 121.67 g of sucrose is to be added. ’

PSEB 12th Class Chemistry Solutions Chapter 2 Solutions

Question 11.
Calculate the mass of ascorbic acid (Vitamin C, C6H8O6) to be dissolved in 75 g of acetic acid to lower its melting point by 1.5°C. Kf = 3.9 Kkg mol-1.
Solution:
Mass of acetic acid, w1 = 75 g
Molar mass of ascorbic acid (C6H8O6), M = 6 × 12 + 8 × 1 + 6 × 16
= 176 g mol-1
Depression in melting point (ATf ) = 1.5 K
Molal depression constant (Kf ) = 3.9 K kg mol-1
We know that,
ΔTb = \(\frac{K_{f} \times w_{2} \times 1000}{M_{2} \times w_{1}}\)
⇒ w2 = \(\frac{\Delta T_{f} \times M_{2} \times w_{1}}{K_{f} \times 1000}\)
= \(\frac{1.5 \times 176 \times 75}{3.9 \times 1000}\)
= 5.08 g
Hence, 5.08 g of ascorbic acid is needed to be dissolved.

Question 12.
Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C. ,
Solution:
It is given that,
Volume of water, V = 450 mL = 0.45 L
Temperature, T = (37 + 273) K = 310 K
R = 8.314 K Pa L K-1 mol-1
= 8.314 × 103 Pa LK-1 mol-1
Number of moles of the polymer, n = \(\frac{1}{185000}\) mol
We know that,
Osmotic pressure, n = \(\frac{n}{V}\)RT
= \(\frac{1}{185000}\) mol × \(\frac{1}{0.45 \mathrm{~L}}\) × 8.314 × 103 Pa LK-1 mol-1 × 310 K
= 30.98 Pa

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions Important Questions and Answers.

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Very short answer type questions

Question 1.
Define mole fraction.
Answer:
Mole fraction of a component in a solution may be defined as the ratio of moles of that compdnent to the total number of moles of all the components present in the solution.

Question 2.
What is the similarity between Raoult’s law and Henry’s law?
Answer:
The similarity between Raoult’s law and Henry’s law is that both state that the partial vapour pressure of the volatile component or gas is directly proportional to its mole fraction in the solution.

Question 3.
Why is the vapour pressure of a solution of glucose in water lower than that of water? (NCERT Exemplar)
Answer:
This is due to decrease in the escaping tendency of the water molecules from the surface of solution as some of the surface area is occupied by non-volatile solute, glucose particles.

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Question 4.
What type of deviation is shown by a mixture of ethanol and acetone? What type of azeotrope is formed by mixing ethanol and acetone?
Answer:
Positive deviation.
Minimum boiling azeotropes.

Question 5.
State how does osmotic pressure vary with temperature.
Answer:
Osmotic pressure increases with increase in temperature.

Question 6.
What are isotonic solutions?
Answer:
The solutions of the same osmotic pressure at a given temperature are called isotonic solutions.

Question 7.
Define van’t Hoff factor.
Answer:
van’t Hoff factor may be defined as the ratio of normal molecular mass to observed molecular mass or the ratio of observed colligative property to normal colligative property.

Question 8.
Why are aquatic species more comfortable in cold water in comparison to warm water? (NCERT Exemplar)
Answer:
Solubility of oxygen in water increases with decrease in temperature. Presence of more oxygen at lower temperature makes the aquatic species more comfortable in cold water.

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Question 9.
What is semipermeable membrane? (NCERT Exemplar)
Answer:
Continuous sheets or films (natural or synthetic) which contain a network of submicroscopic holes or pores through which small solvent molecules (water etc.) can pass, but solute molecules of bigger size cannot pass are called semipermeable membrane.

Question 10.
Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis. (NCERT Exemplar)
Answer:
Cellulose acetate.

Short answer type questions

Question 1.
State Henry’s law. Write its one application. What is the effect of temperature on solubility of gases in liquid?
Answer:
It states that the partial pressure of a gas in vapour phase (p) is proportional to the mole fraction of the gas (χ) in the solution.
p ∝ χ or p = K where KH is the
Henry’s constant.
Application of Henry’s law:
To increase the solubility of CO2 in soft drinks and soda water, the bottle is sealed under high pressure.

Effect of temperature on solubility:
As dissolution is an exothermic process, therefore, according to Le Chatelier’s principle solubility should decrease with rise in temperature.

Question 2.
Why does a solution containing non-volatile solute have higher boiling point than the pure solvent? Why is elevation of boiling point a colligative property?
Answer:
The addition of a non-volatile solute to a volatile solvent lowers its vapour pressure. In order to boil the solution, i.e., to make its vapour pressure equal to atmospheric pressure, the solution has to be heated at a higher temperature. In other words, the boiling point of solution becomes higher than solvent.

As elevation in boiling point depends on the number of moles of solute particles and independent of their nature, therefore, it is a colligative property.

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Question 3.
Will the elevation in boiling point be same if 0.1 mol of sodium chloride or 0.1 mol of sugar is dissolved in 1L of water? Explain.
Answer:
No, the elevation in boiling point is not the same. NaCl, being an electrolyte, dissociates almost completely to give Na+ and Cl ions whereas glucose, being non-electrolyte does not dissociate. Hence, the number of particles in 0.1 M NaCl solution is nearly double than 0.1 M glucose solution. Elevation in boiling point being a colligative property, is therefore, nearly twice for 0.1 M NaCl solution than for 0.1 M glucose solution.

Question 4.
Explain the solubility rule ‘like dissolves like’ in terms of intermolecular forces that exist in solutions. (NCERT Exemplar)
Answer:
If the intermolecular interactions are similar in both constituents, i.e., solute and solvent then solute dissolves in the solvent. e.g., polar solutes dissolve in polar solvents and non-polar solutes in non-polar solvents. Thus, the statement ‘like dissolved like’ proves to be true.

Question 5.
Concentration terms such as mass percentage, ppm, mole fraction and molality are independent of temperature. However, molarity is a function of temperature. Explain.
(NCERT Exemplar)
Answer:
Molarity is defined as the number of moles of solute dissolved per litre of a solution. Since, volume depends on temperature and changes with change in temperature, the molarity will also change with change in temperature. On the other hand, mass does not change with change in temperature, so other concentration terms given in the question also do not do so. According to the definition of all these terms, mass of solvent used for making the solution is related to the mass of solute.

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Question 6.
Which of the following solutions has higher freezing point?
0.05 M Al2(SO4)3, 0.1 M K3 [Fe(CN)6] Justify.
Answer:
0.05 M Al2(SO4)3 has higher freezing point.

Justification:
For 0.05 MAl2(SO4) 3,i = 5
Number of particles = i × concentration
= 5 × 0.05
= 0.25 moles of ions
For 0.1MK3 [Fe(CN)6], i = 4
Number of particles = i × concentration
= 4 × 0.1
= 0.4 moles of ions
We know that, ΔTf. Number of particles
Hence, 0.05 M Al2(SO4)3 has higher freezing point because it has lower number of particles than 0.1 M K3 [Fe (CN)6].

Question 7.
The freezing point of benzene decreases by 2.12 K when 2.5 g of benzoic acid (C6H5COOH) is dissolved in 25 g of benzene. If benzoic acid forms a dimer in benzene, calculate the van’t Hoff factor and the percentage association of benzoic acid. (Kf for benzene = 5.12 K kg mol-1)
Answer:
Given, ΔTf = 2.12 K, Kf = 5.12 K kg mol-1
We know that, ΔTf = i Kf m
2.12 = \(\frac{i \times 5.12 \times 2.5 \times 1000}{122 \times 25}\)
or i = 0.505
For association,
i = 1 – \(\frac{\alpha}{2}\)
0.505 = 1 – \(\frac{\alpha}{2}\)
or α =0.99
Hence, percentage association of benzoic acid is 99%.

Long answer type questions

Question 1.
(a) What type of deviation is shown by a mixture of ethanol and acetone? Give reason.
(b) A solution of glucose (molar mass = 180 g mol-1) in water is labelled as 10% (by mass). What would be the molality and molarity of the solution?
(Density of solution = 1.2 g mL-1)
Answer
(a) A mixture of ethanol and acetone shows positive deviation from Raoult’s law.
In pure ethanol hydrogen bond exist between the molecules. On adding acetone to ethanol, acetone molecules get in between the molecules of . ethanol thus breaking some of the hydrogen bonds and weakening molecular interactions considerably. Weakening of molecular interactions leads to increase in vapour pressure resulting in positive deviation from Raoult’s law.

(b) Let the mass of solution = 100 g
∴ Mass of glucose = 10 g
Number of moles of glucose \(=\frac{\text { Mass of glucose }}{\text { Molar mass }}\)
= \(\frac{10 \mathrm{~g}}{180 \mathrm{~g} \mathrm{~mol}^{-1}}\) = 0.056 mol
PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions 1

PSEB 12th Class Chemistry Important Questions Chapter 2 Solutions

Question 2.
Discuss biological arid industrial importance of osmosis.
(NCERT Exemplar)
Answer:
The process of osmosis is of great biological and industrial importance as is evident from the following examples:

  • Movement of water from soil into plant roots and subsequently into upper portion of the plant occurs partly due to osmosis.
  • Preservation of meat against bacterial action by adding salt.
  • Preservation of fruits against bacterial action by adding sugar.
    Bacterium in canned fruit loses water through the process of osmosis, shrivels and dies.
  • Reverse osmosis is used for desalination of water.

PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules Important Questions and Answers.

PSEB 12th Class Physics Important Questions Chapter 14 Biomolecules

Very short answer type questions

Question 1.
What are oligosaccharides?
Answer:
Carbohydrates which on hydrolysis give two to ten molecules of monosaccharides are called oligosaccharides e. g., sucrose.

Question 2.
How do you explain the presence of all the six carbon atoms in glucose in a straight chain? (NCERT Exemplar)
Answer:
On prolonged heating with HI, glucose gives n-hexane.
PSEB 12th Class Chemistry Important Questions Chapter 14 1

Question 3.
Write the product obtained when D-glucose reacts with H2N—OH.
Answer:
PSEB 12th Class Chemistry Important Questions Chapter 14 2

Question 4.
What are anomers?
Answer:
A pair of stereoisomers such as α-D-(+) glucose and β-D-(+) glucose which differ in configuration only around C1 are called anomers.

PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules

Question 5.
What type of linkage is present in proteins?
Answer:
PSEB 12th Class Chemistry Important Questions Chapter 14 3

Question 6.
What are Vitamins?
Answer:
Vitamins are generally regarded as organic compounds required in the diet in small amounts to perform specific biological functions for normal maintenance of optimum growth and health of the organism.

Question 7.
Why must vitamin C be supplied regularly in diet? [NCERT Exemplar]
Answer:
Vitamin C is water-soluble hence, they are regularly excreted in urine and can not be stored in our body, so, they are supplied regularly in diet.

Question 8.
Of the two bases named below, which one is present in RNA and which one is present in DNA? Thymine, Uracil.
Answer:

  1. Thymine is present in DNA.
  2. Uracil is present in RNA.

Question 9.
The activation energy for the acid-catalyzed hydrolysis of sucrose is 6.22 kJ mol-1, while the activation energy is only 2.15 kJ mol-1 when hydrolysis is catalyzed by the enzyme sucrase. Explain. [NCERT Exemplar]
Answer:
Enzymes, the biocatalysts reduce the magnitude of activation energy by providing alternative paths. In the hydrolysis of sucrose, the enzyme sucrase reduces the activation energy from 6.22 kJ mol-1 to 2.15 kJ mol-1.

Question 10.
Name the bases present in RNA. Which one of these is not present in DNA?
Answer:
The bases present in RNA are Adenine (A), Guanine (G), Cytosine (C) and Uracil (U). Uracil is not present in DNA.

PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules

Short answer type questions

Question 1.
What is essentially the difference between α-glucose and β-glucose? What is meany by pyranose structure of glucose?
Answer:
α -Glucose and β-Glucose differ only in the configuration of hydroxy group at C1 and are called anomers and the C1 carbon is called anomeric carbon. The six-membered cyclic structure of glucose is called pyranose (α-or β), in analogy with pyran. The cyclic structure of glucose is more correctly represented by Haworth structure as given below:
PSEB 12th Class Chemistry Important Questions Chapter 14 4

Question 2.
Describe the term D- and L-configuration used for amino acids with examples. [NCERT Exemplar]
Answer:
All naturally occurring a-amino acids (except glycine) are optically active due to the presence of chiral carbon atom. These have either D- or  L-configuration. D-form means that the amino (-NH2) group is present towards the right-hand side. L-form shows the presence of -NH2 group on the left-hand side.
PSEB 12th Class Chemistry Important Questions Chapter 14 5

Question 3.
Aldopentoses named as ribose and 2-deoxyribose are found in nucleic acids. What is their relative configuration? [NCERT Exemplar]
Answer:
In case of cyclic structure of saccharide, if -OH group present at second last carbon is present at bottom side, then it is considered as D configuration (as shown above).
PSEB 12th Class Chemistry Important Questions Chapter 14 6

Question 4.
How do enzymes help a substrate to be attacked by the reagent effectively? [NCERT Exemplar]
Answer:
At the surface of enzyme, active sites are present. These active sites of enzymes hold the substrate molecule in a suitable position so that it can be attacked by the reagent effectively. This reduces the magnitude of activation energy.

Enzymes contains cavities of characteristics shape and possessing active groups known as active centre on the surface. The molecules of the reactant (substrate) having complementary shape, fit into these cavities. On account of these active groups, an activated complex is formed which then decomposes to yield the products.

PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules

Question 5.
Amino acids can be classified as α-, β-, γ-, δ- and so on depending upon the relative position of amino group with respect to carboxyl group. Which type of amino acids form polypeptide chain in proteins? [NCERT Exemplar]
Answer:
α-amino acid forms a polypeptide chain by elimination of water molecules.
PSEB 12th Class Chemistry Important Questions Chapter 14 7

Question 6.
(i) Winch vitamin deficiency causes rickets?
(ii) Name the base that is found in nucleotide of RNA only.
(iii) Glucose on reaction with acetic acid gives glucose Penta acetate. What does it suggest about the structure of glucose?
Answer:
(i) Vitamin D
(ii) Uracil
(iii) 5-OH groups are present in glucose.

Long answer type questions

Question 1.
Which moieties of nucleosides are involved in the formation of phosphodiester linkages present in dinucleotides? What does the word diester in the name of linkage indicate? Which acid is involved in the formation of this linkage?
Answer:
(i) 5′ and 3′ carbon atoms of pentose sugar.
(ii) Most probably the resemblance of with 2 esters (-COO)2 groups joined together.
PSEB 12th Class Chemistry Important Questions Chapter 14 8
(iii) Phosphoric acid (H3PO4).
Nucleosides are joined together by phosphodiester linkage between 5′ and 3′ carbon atoms of pentose sugar and a dinucleotide with phosphoric acid (CH3PO4) is formed.
PSEB 12th Class Chemistry Important Questions Chapter 14 9

Question 2.
Write the structures of fragments produced on complete hydrolysis of DNA. How are they linked in DNA molecules? Draw a diagram to show pairing of nucleotide bases in double helix of DNA. [NCERT Exemplar]
Answer:
On complete hydrolysis of DNA, following fragments are formed-pentose sugar (β-D-2-deoxyribose), phosphoric acid (H3PO4) and bases (nitrogen-containing heterocyclic compounds).
Structures
(i) Sugar
PSEB 12th Class Chemistry Important Questions Chapter 14 10
(ii) Phosphoric acid
PSEB 12th Class Chemistry Important Questions Chapter 14 11
(iii) Nitrogen bases: DNA contains four bases.
Adenine (A), Guanine (G), Cytosine (C), and Thymine (T).
PSEB 12th Class Chemistry Important Questions Chapter 14 12
A unit formed by the attachment of a base to 1′-position of sugar is called nucleoside. When nucleoside links to phosphoric acid at 5′-position of sugar moiety, a nucleotide is formed. Nucleotides are joined together by phosphodiester linkage between 5′ and 3′ carbon atoms of the pentose sugar. In DNA two nucleic acid chains are wound about each other and held together by hydrogen bonds between pairs of bases.

PSEB 12th Class Chemistry Important Questions Chapter 14 Biomolecules

The two strands are complementary to each other because hydrogen bonds are formed between specific pairs of base adenine form hydrogen bonds with thymine whereas cytosine forms hydrogen bonds with guanine.
PSEB 12th Class Chemistry Important Questions Chapter 14 13

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 14 Biomolecules Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 14 Biomolecules

PSEB 12th Class Chemistry Guide Biomolecules InText Questions and Answers

Question 1.
What are monosaccharides?
Answer:
Monosaccharides are carbohydrates which cannot be further hydrolysed to simpler molecules. The general formula of monosaccharides is (CH2O)n where n = 3-7.

Question 2.
What are reducing sugars?
Answer:
Carbohydrates which reduce Fehling’s solution to red precipitate of Cu2O or Tollen’s reagent to metallic Ag are called reducing sugars. All monosaccharides (both aldoses and ketoses) and disaccharides except sucrose are reducing sugars.

Question 3.
Write two main functions of carbohydrates in plants.
Answer:
Two main functions of carbohydrates in plants are:

  1. Polysaccharides such as starch serve as storage molecules.
  2. Cellulose, a polysaccharide, is used to build the cell wall.

Question 4.
Classify the following into monosaccharides and disaccharides. Ribose, 2-deoxyribose, maltose, galactose, fructose and lactose
Answer:
Monosaccharides: Ribose, 2-deoxyribose, galactose, fructose
Disaccharides: Maltose, lactose.

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Question 5.
What do you understand by the term glycosidic linkage?
Answer:
Glycosidic linkage refers to the linkage formed between two monosaccharide units through an oxygen atom by the loss of a water molecule. For example, in a sucrose molecule, two monosaccharide units, α-D-glucose and β-D-fructose, are joined together by a glycosidic linkage.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 1

Question 6.
What is glycogen? How is it different from starch?
Answer:
Glycogen is a carbohydrate (polysaccharide). In animals, carbohydrates are stored as glycogen. Starch is a carbohydrate consisting of two components-amylose (15 – 20%) and amylopectin (80 – 85%). However, glycogen consists of only one component whose structure is similar to amylopectin. Also, glycogen is more branched than amylopectin. Glycogen chain consists of 10-14 glucose units whereas amylopectin chains consist of 20-25 glucose units.

Question 7.
What are the hydrolysis products of (i) sucrose and (ii) lactose?
Answer:
(i) On hydrolysis, sucrose gives one molecule of α-D glucose and one molecule of β-D-fructose.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 2
(ii) On hydrolysis, lactose gives β-D-galactose and β-D-glucose.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 3

Question 8.
What is the basic structural difference between starch and cellulose?
Answer:
Starch consists of two components-amylose and amylopectin. Amylose is a long linear chain of ≅α-D-(+)-glucose units joined by C1 -C4 glycosidic linkage (α-link).
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 4
Amylopectin is a branched-chain polymer of []α-D-glucose units, in which the chain is formed by C1 -C4 glycosidic linkage and the branching occurs by C1 – C6 glycosidic linkage.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 5
On the other hand, cellulose is a straight-chain polysaccharide of β-D-glucose units joined by C1– C4 glycosidic linkage (β-link).
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 6

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Question 9.
What happens when D-glucose is treated with the following reagents?
(i) HI
(ii) Bromine water
(iii) HNO3
Answer:
(i) HI s On prolonged heating with HI, glucose forms n-hexane.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 7
(ii) Br2 water: Glucose gets oxidised (gluconic acid) on reaction with a mild oxidising agent like bromine water.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 8
(iii) HNO3: On oxidation with nitric acid, glucose yields a dicarboxylic acid, that is saccharic acid.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 9

Question 10.
Enumerate the reactions of D-glucose which cannot be explained by its open-chain structure.
Answer:

  • Aldehydes give 2, 4-DNP test, Schiff’s test, and react with NaHSO4 to form the hydrogen sulphite addition product. However, glucose does not undergo these reactions.
  • The pentaacetate of glucose does not react with hydroxylamine. This indicates that a free -CHO group is absent from glucose.
  • Glucose exists in two crystalline forms-α and β. The α-form (m.p. = 419 K) crystallises from a concentrated solution of glucose at 303 K and the β-form (m.p = 423 K) crystallises from a hot and saturated aqueous solution at 371 K. This behaviour cannot be explained by the open chain structure of glucose.

Question 11.
What are essential and non-essential amino acids? Give two examples of each type.
Answer:
Essential amino acids are required by the human body, but they cannot be synthesised in the body. They must be taken through food, e.g., valine and leucine. Non-essential amino acids are also required by the human body, but they can be synthesised in the body e.g., glycine and alanine.

Question 12.
Define the following as related to proteins
(i) Peptide linkage
(ii) Primary structure
(iii) Denaturation.
Answer:
(i) Peptide linkage: The amide formed between —COOH group of one molecule of an amino acid and -NH2 group of another molecule of the amino acid by the elimination of a water molecule is called a peptide linkage.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 10
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 11
(ii) Primary structure: The primary structure of protein refers to the specific sequence in which various amino acids are present in it, i.e., the sequence of linkages between amino acids in a polypeptide chain. The sequence in which amino acids are arranged is different in each protein. A change in the sequence creates a different protein.

(iii) Denaturation: In a biological system, a protein is found to have a unique 3-dimensional structure and a unique biological activity. In such a situation, the protein is called native protein. However, when the native protein is subjected to physical changes such as change in temperature or chemical changes such as change in pH, its H-bonds are disturbed.

This disturbance unfolds the globules and uncoils the helix. As a result, the protein loses its biological activity. This loss of biological activity by the protein is called denaturation. During denaturation, the secondary and the tertiary structures of the protein get destroyed, but the primary structure remains unaltered. One of the examples of denaturation of proteins is the coagulation of egg white when an egg is boiled.

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Question 13.
What are the common types of secondary structures of proteins?
Answer:
There are two common types of secondary structure of proteins:
(i) α- helix structure: In this structure, the -NH group of an amino acid residue forms H-bond with the img group of the adjacent turn of the right-handed screw (α-helix).
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 12
(ii) β-pleated sheet structure: This structure is called so because it looks like the pleated folds of drapery. In this structure, all the peptide chains are stretched out to nearly the maximum extension and then laid side by side. These peptide chains are held together by intermolecular hydrogen bonds.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 13

Question 14.
What type of bonding helps in stabilising the α-helix structure of proteins?
Answer:
The α-helix structure of proteins is stabilised by intramolecular H-bonding between C-O of one amino acid residue and the N-H of the fourth amino acid residue in the chain.

Question 15.
Differentiate between globular and fibrous proteins.
Answer:

Globular proteins Fibrous proteins
1. These are water-soluble proteins. These are water-insoluble proteins.
2. These are spherical in shape. These are linear in shape.
3. Globular proteins are highly unstable. Fibrous proteins are stable to moderate changes in temperature and pH.

Question 16.
How do you explain the amphoteric behaviour of amino acids?
Answer:
In aqueous solution, the carboxyl group of an amino acid can lose a proton and the amino group can accept a proton to give a dipolar ion known as zwitterion.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 14
Therefore, in zwitterionic form, the amino acid can act both as an acid and as a base.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 15
Thus, amino acids show amphoteric behaviour.

Question 17.
What are enzymes?
Answer:
Enzymes are proteins that catalyse biological reactions. They are very specific in nature and catalyse only a particular reaction for a particular substrate. Enzymes are usually named after the particular substrate or class of substrate and sometimes after the particular reaction. For example, the enzyme used to catalyse the hydrolysis of maltose into glucose is named as maltase.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 16
Again, the enzymes used to catalyse the oxidation of one substrate with the simultaneous reduction of another substrate are named as oxidoreductase enzymes. The name of an enzyme ends with ‘ – ase’.

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Question 18.
What is the effect of denaturation on the structure of proteins?
Answer:
During denaturation, 2° and 3° structures of proteins are destroyed but 1° structure remains intact. Due to denaturation, the globular proteins (soluble in H20) are converted into fibrous proteins (insoluble in H2O) and their biological activity is lost. For example, boiled egg which contains coagulated proteins cannot be hatched.

Question 19.
How are vitamins classified? Name the vitamin responsible for the coagulation of blood.
Answer:
Vitamins are classified into two groups depending upon their solubility in water or fat.

  1. Water-soluble vitamins: These include vitamin B-complex (B1, B2, B5, i.e., nicotinic acid, B6, B12, pantothenic acid, biotin, i.e., vitamin H and folic acid) and vitamin C.
  2. Fat-soluble vitamins: These include vitamins A, D, E and K. These are stored in liver and adipose tissues (fat-storing tissues). Vitamin K is responsible for coagulation of blood.

Question 20.
Why are vitamin A and vitamin C essential to us? Give their important sources.
Answer:
Vitamin A: Vitamin A is essential for us because its deficiency can cause xerophthalmia (hardening of cornea of eye) and night blindness. Sources: Carrots, fish liver oil, butter and milk.
Vitamin C: Vitamin C is essential for us because its deficiency causes scurvy (bleeding gums) and pyorrhea (loosening and bleeding of teeth).
Sources: Amla, citrus fruits and green leafy vegetables.

Question 21.
What are nucleic acids? Mention their two important functions.
Answer:
Nucleic acids are biomolecules which are found in the nuclei of all living cells in the form of nucleoproteins or chromosomes (proteins containing nuclei acids as the prosthetic group).

These are of two types: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
The two main functions of nucleic acids are :

  1. DNA is responsible for transmission of hereditary effects from one generation to another. This is because of the unique property of replication during cell division and the transfer of two identical DNA strands to the daughter cells.
  2. DNA and RNA are responsible for synthesis of all proteins essential for the growth and maintenance of our body. Actually, the proteins are synthesised by various RNA molecules (rRNA, mRNA and tRNA) in the cell but the message for the synthesis of a particular protein is present in DNA.

Question 22.
What is the difference between a nucleoside and a nucleotide?
Answer:
A nucleoside is formed when 1-position of pyrimidine (cytosine, thymine or uracil) or 9-position of purine (guanine or adenine) base is connected to C-1 of sugar (ribose or deoxyribose) by a β-linkage. Hence, in general, nucleosides may be represented as: Sugar-Base.

A nucleotide contains all the three basic compounds of nucleic acids, i.e., a phosphoric acid group, a pentose sugar and a nitrogenous base. These are obtained by esterification of C’5– OH group of the pentose sugar by phosphoric acid.

Question 23.
The two strands in DNA are not identical but are complementary. Explain.
Answer:
In the helical structure of DNA, the two strands are held together by hydrogen bonds between specific pairs of bases. Cytosine forms hydrogen bond with guanine, while adenine forms hydrogen bond with thymine. As a result, the two strands are complementary to each other.

Question 24.
Write the important structural and functional differences between DNA and RNA.
Answer:
Structural differences

DNA RNA
(i) The sugar present in DNA is 2-deoxy-D-(-)-ribose. The sugar present in RNA is D-(-)-ribose.
(ii) DNA contains cytosine and thymine as pyrimidine bases. RNA contains cytosine and uracil as pyrimidine bases.
(iii) DNA has a double-stranded a-helix structure. RNA has a single-stranded a-helix structure.
(iv) DNA molecules are very large; their molecular mass may vary from 6 x 106 -16 x 106 u. RNA molecules are much smaller with molecular mass ranging from 20,000 to 40,000 u.

Functional differences:

(i) DNA has unique property of replication. RNA usually does not replicate.
(ii) DNA controls the transmission of hereditary effects. RNA controls the synthesis of proteins.

Question 25.
What are the different types of RNA found in the cell?
Answer:
Three types of RNA present in the cell are :

  1. Messenger RNA (m-RNA)
  2. Ribosomal RNA (r-RNA)
  3. Transfer RNA (t-RNA)

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Chemistry Guide for Class 12 PSEB Biomolecules Textbook Questions and Answers

Question 1.
Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six-membered ring compounds) are insoluble in water. Explain.
Answer:
Glucose and sucrose have hydroxyl (-OH) groups (5 in glucose and 8 in sucrose) which form strong hydrogen bonds with water molecules and hence these are soluble in water. Cyclohexane and benzene are non-polar compounds and do not have hydroxyl groups and hence they are not able to form hydrogen bonding with water molecules and, therefore, these are not soluble in water.

Question 2.
What are the expected products of hydrolysis of lactose?
Answer:
Lactose is composed of β-D galactose and β-D glucose. Thus, on hydrolysis, it gives D-(+)- galactose and D-(+)- glucose.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 17

Question 3.
How do you explain the absence of aldehyde group in the pentaacetate of D-glucose?
Answer:
D-glucose reacts with hydroxylamine (NH2OH) to form an oxime because of the presence of aldehydic (-CHO) group or carbonyl carbon. This happens as the cyclic structure of glucose forms an open-chain structure in an aqueous medium, which then reacts with NH2OH to give an oxime.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 18
But pentaacetate of D-glucose does not react with NH2OH. This is because pentaacetate does not form an open-chain structure.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 19

PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules

Question 4.
The melting points and solubility in water of amino acids are generally higher than that of the corresponding halo acids. Explain.
Answer:
Both acidic (carboxyl) as well as basic (amino) groups are present in the same molecule of amino acids. In aqueous solutions, the carboxyl group can lose a proton and the amino group can accept a proton, thus giving rise to a dipolar ion known as a zwitterion.
PSEB 12th Class Chemistry Solutions Chapter 14 Biomolecules 20
Due to this dipolar behaviour, they have strong electrostatic interactions within them and with water. But halo-acids do not exhibit such dipolar behaviour. For this reason, the melting points and the solubility of amino acids in water is higher than those of the corresponding halo-acids.

Question 5.
Where does the water present in the egg go after boiling the egg?
Answer:
When an egg is boiled, the proteins present inside the egg get denatured and coagulated. After boiling the egg, the water present in it is absorbed by the coagulated protein through H-bonding.

Question 6.
Why cannot vitamin C be stored in our body?
Answer:
Because vitamin C are water-soluble vitamins and so these are readily excreted through urine and hence cannot be stored in our body.

Question 7.
What products would be formed when a nucleotide from DNA containing thymine is hydrolysed?
Answer:
When a nucleotide from the DNA containing thymine is hydrolysed, thymine β-D-2-deoxyribose and phosphoric acid are obtained as products.

Question 8.
When RNA is hydrolysed, there is no relationship among the quantities of different bases obtained. What does this fact suggest about the structure of RNA?
Answer:
On complete hydrolysis of RNA six compounds are isolated. These compounds are adenine, guanine, cytosine, uracil, D-ribose and phosphoric acid. There is, no relationship among the quantities of different bases obtained on hydrolysis of RNA suggests that RNA is single-stranded. If it would have been double-stranded like DNA the complementary pairing of bases would have given equal proportion of complementary bases.

PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers Important Questions and Answers.

PSEB 12th Class Physics Important Questions Chapter 15 Polymers

Very short answer type questions

Question 1.
Which of the following is a natural polymer? Buna-S, Proteins, PVC
Answer:
Proteins.

Question 2.
Can enzyme be called a polymer? [NCERT Exemplar]
Answer:
Enzymes are biocatalysts which are proteins and are thus polymers.

Question 3.
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 1
Answer:
Homopolymer.

Question 4.
Identify the type of polymer -A-B-B-A-A-A-B-A- [NCERT Exemplar]
Answer:
Copolymer.

Question 5.
Out of chain growth polymerisation and step-growth polymerisation, in which type will you place the following: [NCERT Exemplar]
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 2
Answer:
Chain growth polymerisation, as there is no loss of small molecules like water; methanol, etc.
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 3

Question 6.
What is the role off-butyl peroxide in the polymerisation of ethene?
Answer:
It acts as a free radical generating initiator in the chain initiation step of polymerisation of ethene.

PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers

Question 7.
Can nucleic acids, proteins and starch be considered as step growth polymers? [NCERT Exemplar]
Answer:
Yes, step-growth polymers are condensation polymers and they are formed by the loss of simple molecules like water leading to the formation of high molecular mass polymers.

Question 8.
Write the structure of the monomer used for getting the melamine-formaldehyde polymer.
Answer:
Melamine and formaldehyde
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 4

Question 9.
How is the following resin intermediate prepared and which polymer is formed by this monomer unit?
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 5
Answer:
Melamine and formaldehyde are starting materials for this intermediate. Its polymerisation gives melamine polymer.

Question 10.
Why does cis-polyisoprene possess elastic property? [NCERT Exemplar]
Answer:
cis-polyisoprene is also known’ as natural rubber. Its elastic property is due to the existence of weak van der Waals’ interactions between their various polymer chains.

Short answer type questions

Question 1.
Which of the following polymers soften on heating and harden on cooling? What are the polymers with this property collectively called? What are the structural similarities between such polymers? Bakelite, urea-formaldehyde resin, polythene, polyvinyls, polystyrene. [NCERT Exemplar]
Answer:
Polythene, polyvinyls and polystyrene soften on heating and harden on cooling. Such polymers are called thermoplastic polymers. These polymers are linear or slightly branched long-chain molecules. These possess intermolecular forces whose strength lies between strength of intermolecular forces of elastomers and fibres.

Question 2.
What is the role of benzoyl peroxide in addition polymerisation of alkenes? Explain its mode of action with the help of an example. [NCERT Exemplar]
Answer:
Role of benzoyl peroxide is to initiate the free radical polymerisation reaction which can be easily understood by taking an example of polymerisation of ethene of polythene.
(i) Chain initiation
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 6

(ii) Chain propagation
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 7

(iii) Chain terminator step
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 8

Question 3.
Low-density polythene and high-density polythene, both are polymers of ethene but there is marked difference in their properties. Explain. [NCERT Exemplar]
Answer:
Low density and high-density polythenes are obtained under different conditions. These differ in their structural features. Low-density polythenes are highly branched structures while high-density polythene consists of closely packed linear molecules. Close packing increases the density.

PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers

Question 4.
Differentiate between rubbers and plastics on the basis of intermolecular forces. [NCERT Exemplar]
Answer:
Rubber is a natural polymer which possess elastic properties. Natural polymer is a linear polymer of isoprene (2-methyl-1, 3-butadiene).
In natural rubber cis-polyisoprene molecules consists of various chains held together by weak van der Waals’ interaction and has coiling structure. So, it can be stretched like a spring.
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 9
Plastics are generally polymers of ethene known as polythene. Polythene is thermoplastic polymer which may be linear (HDP) or branched (LDP) these type of polymers. Possesses intermediate intermolecular forces of attraction. It has linear, structure that can be moulded but can’t be regained on its original shape after stretching.

Question 5.
A natural linear polymer of 2-methyl-l, 3-butadiene becomes hard on treatment with sulphur between 373 to 415 K and -S-S- bonds are formed between chains. Write the structure of the product of this treatment? [NCERT Exemplar]
Answer:
The product is called vulcanised rubber. Its structure is as follows :
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 10

Question 6.
Name the type of reaction involved in the formation of the following polymers from their respective monomers
(i) PVC.
(ii) Nylon6.
(iii) PHBV.
Answer:
(i) Addition
(ii) Condensation/Hydrolysis
(iii) Condensation.

Long answer type questions

Question 1.
Explain the following terms giving a suitable example for each:
(i) Elastomers
(ii) Condensation polymers
(iii) Addition polymers
Answer:
(i) Elastomers: These are the polymers having the weakest intermolecular forces of attraction between the polymer chains. The weak forces permit the polymer to be stretched. A few ‘cross links’ are introduced between the chains, which help the polymer to retract to its original position after the force is released as in vulcanised rubber. Elastomers thus possess an elastic character. For example, buna-S, buna-N, neoprene, etc.

(ii) Condensation polymers: The condensation polymers are formed by the repeated condensation reaction between different bi-functional or tri-functional monomer units usually with elimination of small molecules such as water, alcohol, hydrogen chloride, etc. For example, Nylon-6,6, nylon 6, terylene, etc.

(iii) Addition polymers: Addition polymers are formed by repeated addition of same or different monomer molecules. The monomers used are unsaturated compounds. For example, alkenes alkadienes and their derivatives. Polythene is an example of addition polymer.
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 11

PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers

Question 2.
Phenol and formaldehyde undergo condensation to give a polymer (A) which on heating with formaldehyde gives a thermosetting polymer (B). Name the polymers. Write the reactions involved in the formation of (A). What is the structural difference between two polymers? [NCERT Exemplar]
Answer:
Phenol and formaldehyde undergo condensation to give a polymer novolac (A) which on heating with formaldehyde gives bakelite (B) as a thermosetting polymer.
A sequence of the reaction can be written as follows :
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 12
Structural difference in between these two is that novolac is a linear polymer while bakelite is a cross-linked polymer.
PSEB 12th Class Chemistry Important Questions Chapter 15 Polymers 13

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State Important Questions and Answers.

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Very short answer type questions

Question 1.
Give an example each of a molecular solid and an ionic solid.
Answer:
Molecular solids: CO2, I2, HCl
Ionic solids: NaCl, ZnS, CaF2

Question 2.
Why does the window glass of the old buildings look milky?
Answer:
It is due to heating during the day and cooling at night, i.e., due to annealing over a number of years, glass acquires crystalline character.

Question 3.
What would be the nature of solid if there is no energy gap between valence band and conduction band?
Answer:
Conductor.

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Question 4.
Express the relationship between atomic radius (r) and the edge length (a) in the bcc unit cell,
Answer:
Atomic radius (r) = \(\frac{\sqrt{3}}{4}\) a (edge length of unit cell).

Question 5.
Which point defect in its crystal units increases the density of a solid?
Answer:
Interstitial defect.

Question 6.
What is meant by the term ‘forbidden zone’ in reference to band theory of solids?
Answer:
The energy gap between valence band and conduction band is known as forbidden zone.

Question 7.
‘Crystalline solids are anisotropic in nature.’ What does this statement mean?
Answer:
It means that some of their physical properties like electrical conductivity, refractive index, etc., are diferent in different directions.

Question 8.
Why does the electrical conductivity of semiconductors increase with rise in temperature? [NCERT Exemplar)
Answer:
The gap between conduction band and valence band is small in semiconductors. Therefore, electrons from the valence band can jump to the conduction band on increasing temperature. Thus, they become more conducting as the temperature increases.

Question 9.
Why does table salt NaCl sometimes appear yellow in colour?
(NCERT Exemplar)
Answer:
Yellow colour in NaCl is due to metal excess defect due to which unpaired electrons occupy anionic sites, known as F-centres. These electrons absorb energy from the visible region for the excitation which makes crystal appear yellow.

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Question 10.
Why are liquids and gases categorised as fluids? (NCERT Exemplar)
Answer:
Liquids and gases have the tendency to flow, i.e., their molecules can move freely from one place to another. Therefore, they are known as fluids.

Short answer type questions

Question 1.
(i) What type of stoichiometric defect is shown by KC1 and why?
(ii) What type of semiconductor is formed when silicon is doped with As?
(iii) Which one of the following is an example of molecular solid : CO2 or SiO2?
Answer:
(i) KCl shows Schottky defect as the cation, K+ and anion, Cl are of almost similar sizes.
(ii) n-type semiconductor.
(iii) CO2

Question 2.
Iron has a body centred cubic unit cell with a cell dimension of 286.65 pm. The density of iron is 7.874 g cm-3. Use this information to calculate Avogadro’s number. (At. mass of Fe = 55.845 u)
Solution:
Given, a =286.65 pm = 286.65 × 10-10 cm; M = 55.845 g mol-1;
d = 7.874 g cm-3
For bee unit cell, z = 2
Substituting the values in the expression, NA = \(\frac{z \times M}{a^{3} \times d}\), we get
NA = \(\frac{2 \times 55.845 \mathrm{~g} \mathrm{~mol}^{-1}}{\left(286.65 \times 10^{-10} \mathrm{~cm}\right)^{3} \times 7.874 \mathrm{~g} \mathrm{~cm}^{-3}}\)
NA = 6.022 × 1023 mol-1

Question 3.
An element crystallises in a fee lattice with cell edge of 400 pm. The density of the element is 7 g cm-3. How many atoms are present in 280 g of the element?
Solution:
Given, a = 400 pm = 400 × 10-10 cm = 4 x× 10-8 cm
Volume of the unit cell = a3
= (4 × 10-8 cm)3 = 6.4 × 10-23cm3
PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State 1
Since each fee unit cell contains 4 atoms, therefore, the total number of atoms in 280 g = 4 × 6.25 × 1023 = 2.5 × 1024 atoms

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Question 4.
An element crystallises in a fee lattice with cell edge of 400 pm. Calculate the density if 200 g of this element contain 2.5 × 1024 atoms.
PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State 2
Molar mass M = 48.18 g mol-1
Here, z = 4, M = 48.18 g mol-1, NA = 6.022 × 1023 mol-1
a = 400 pm = 400 × 10-10 cm = 4 × 10-8 cm
Substituting these values in the expression,
d = \(\frac{z \times M}{a^{3} \times N_{A}}\) , we get
d = \(\frac{4 \times 48.18 \mathrm{~g} \mathrm{~mol}^{-1}}{\left(4 \times 10^{-8} \mathrm{~cm}\right)^{3} \times\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)}\) = 5 g cm-3

Question 5.
Explain why does conductivity of germanium crystals increase on doping with galium?
Answer:
On doping germanium with galium some of the positions of lattice of germanium are occupied be galium. Galium atom has only three valence electrons. Therefore, fourth valency of nearly germanium atom is not satisfied. The place remains vacant. This place is deficient of electrons and is therefore called electron hole or electron vacancy. Electron from neighbouring atom comes and fills the hole, thereby creating a hole in its original position. Under the influence of electric field electrons move towards positively charged plates through these and conduct electricity. The holes appear to move towards negatively charged plates.

Long answer type questions

Question 1.
A sample of ferrous oxide has actual formula Fe0.93O1.00In this
sample what fraction of metal ions are Fe2+ ions? What type of non-stoichiometric defect is present in this sample? (NCERT Exemplar)
Solution:
Let the formula of the sample be (Fe2+ )x (Fe3+ )y O
On looking at the given formula of the compound
x + y = 0.93 ………….. (i)
Total positive charge on ferrous and ferric ions should balance the two units of negative charge on oxygen.
Therefore, 2x + 3y = 2 ……….. (ii)
x + \(\frac{3}{2}\)y = 1 ……………..(iii)
On subtracting equation (i) from equation (iii) we have
\(\frac{3}{2}\) y – y = 1 – 0.93 ⇒ \(\frac{1}{2}\)y = 0.07 ⇒ y = 0.14
On putting the value of y in equation (i), we get
x + 0.14 = 0.93
⇒ x = 0.93 – 0.14 ⇒ x = 0.79
Fraction of Fe2+ ions present in the sample = \(\frac{0.79}{0.93}\) = 0.849
Metal deficiency defect is present in the sample because iron is less in amount than that required for stoichiometric composition.

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Question 2.
(i) Following is the schematic alignment of magnetic moments:
PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State 3
Identify the type of magnetism. What happens when these substances are heated?
(ii) If the radius of the octahedral void is ‘r’ and radius of the atoms in close packing is ‘R’ What is the relation between ‘r’ and ‘R’?
(iii) Tungsten crystallises in body centred cubic unit cell. If the edge of the unit cell is 316.5 pm. What is the radius of tungsten atom?
Answer:
(i) The given schematic alignment of magnetic moments shows ferrimagnetism. When these substances are heated they lose ferrimagnetism and become paramagnetic.

(ii) The radius of the octahedral void = r
The radius of the atoms in close packing = R
Relation between r and R is given as :
r = 0.414 R

(iii) Given, a = 316.5 pm
Vs
We know that for body centred cubic unit cell r = \(\frac{\sqrt{3}}{4}\) a
∴ r = \(\frac{\sqrt{3}}{4}\) × 316.5 pm = 136.88 pm

PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State

Question 3.
(i) Identify the type of defect shown in the following figure:
PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State 4

What type of substances show this defect?
(ii) A metal crystallises in a body centred cubic structure. If ‘a’ is the edge length of its unit cell, ‘r’ is the radius of the sphere. What is the relationship between ‘r’ and ‘a’?
(iii) An element with molar mass 63 g/ mol forms a cubic unit cell with edge length of 360.8 pm. If its density is 8.92 g/cm 3. What is the nature of the cubic unit cell?
Answer:
(i) The given figure shows Schottky defect. This defect arises when equal number of cations and anions are missing from the lattice. It is a common defect in ionic compounds of high coordination number.
Where born cations and anion are of the same size, e.g., KCl, NaCl, KBr etc.

(ii) Edge length of the unit cell = a
Radius of the sphere = r
For body centred cubic structure ,
r = \(\frac{\sqrt{3}}{4}\)

(iii) We know that,
Density d = \(\frac{z \times M}{a^{3} \times N_{A}}\) or z = \(\frac{d \times a^{3} \times N_{A}}{M}\)
Given,
M = 63 g-mol-1 6.3 × 10-2 kg mol-1
a = 360.8 pm = 360.8 × 10-12 m = 3.608 × 10-10m
d = 8.92 g/cm2 = 0.892 kgm-3
NA = 6.022 × 1023 mol-1
On putting the given values in formula,
PSEB 12th Class Chemistry Important Questions Chapter 1 The Solid State 5
= 3.97 ≅ 4.
Since, 4 atoms of the element present per unit cell. Hence, the cubic unit cell must be face-centered.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 15 Polymers Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 15 Polymers

PSEB 12th Class Chemistry Guide Polymers InText Questions and Answers

Question 1.
Explain the terms polymer and monomer.
Answer:

  • Polymer is a high molecular mass macromolecule consisting of repeating structural units derived from monomers.
  • A monomer is a simple molecule capable of undergoing polymerisation and leading to the formation of the corresponding polymer.

Question 2.
What are natural and synthetic polymers? Give two examples of each type.
Answer:

  1. Natural polymers are high molecular mass macromolecules and are found in plants and animals. For example, proteins and nucleic acids,
  2. Synthetic polymers are man-made high molecular mass macromolecules. These include synthetic plastics, fibres and rubbers. For example, polythene and dacron.

Question 3.
Distinguish between the terms homopolymer and copolymer and give an example of each.
Answer:
Homopolymer: Polymers whose repeating structural units are derived from only one type of monomer units are called homopolymers. For example, polythene, PAN, Teflon, nylon-6, etc.

Copolymer: Polymers whose repeating structural units are derived from two or more types of monomer molecules are called copolymers. For example, Buna-S, Buna-N, nylon-6,6 polyester, bakelite, etc.

Question 4.
How do you explain the functionality of a monomer?
Answer:
The functionality of a monomer is the number of binding sites in a molecule. For example, the functionality of ethene, propene, styrene, acrylonitrile is one and that of 1, 3-butadiene, adipic acid, terephthalic acid, hexamethylenediamine is two.

Question 5.
Define the term polymerisation.
Answer:
The polymerisation is a process of formation of a high molecular mass polymer from one or more monomers by linking together a large number of repeating structural units through covalent bonds.

Question 6.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 1
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 2 is a homopolymer because it is obtained from a single monomer unit, NH2-CHR-COOH.

Question 7.
In which classes, the polymers are classified on the basis of molecular forces?
Answer:
On the basis of molecular forces of attraction polymers are classified into the following classes :

  • Elastomers
  • Fibres
  • Thermoplastic polymers and
  • Thermosetting polymers.

Question 8.
How can you differentiate between addition and condensation polymerisation?
Answer:
(i) Addition polymerisation: In this, polymers are formed by the repeated addition of monomers molecules possessing double or triple bonds.
For example :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 3

(ii) Condensation polymerisation: It is a process in which two or more bi-functional molecules undergo a series of condensation reactions with the elimination of some simple molecules and leading to the formation of polymers.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 4

Question 9.
Explain the term copolymerisation and give two examples.
Answer:
When a mixture containing more than one monomeric species is allowed to polymerise, the product obtained is called a copolymer and the process is called copolymerisation. For example, Buna-S, a copolymer of 1,3-butadiene and styrene and Buna-N, a copolymer of 1,3-butadiene and acrylonitrile.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 10.
Write the free radical mechanism for the polymerisation of ethene.
Answer:
The mechanism of chain growth polymerisation of ethene of free radical mechanism is given below :
Step I. Chain initiation step :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 5

Step II. Chain propagation step :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 6
Step III. Chain terminating step :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 7

Question 11.
Define thermoplastics and thermosetting polymers with two examples Of each.
Answer:
Thermoplastic polymers: These polymers are the linear or slightly. branched long-chain molecules capable of repeatedly softening on heating and hardening on cooling. These polymers possess intermolecular forces of attraction intermediate between elastomers and fibres. Some common examples are polythene, polystyrene, polyvinyl, etc.

Thermosetting polymers: These polymers are cross-linked or heavily branched molecules, which on heating undergo extensive cross-linking in moulds and again become infusible. These polymers cannot be reused. Some common examples are bakelite, urea-formaldehyde resins, etc.

Question 12.
Write the monomers used for getting the following polymers :
(i) Polyvinyl chloride
(ii) Teflon
(iii) Bakelite
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 8

Question 13.
Write the name and structure of one of the common initiators used in free radical addition polymerisation.
Answer:
One common initiator used in free radical addition polymerisation is benzoyl peroxide. Its structure is given below:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 9

Question 14.
How does the presence of double bonds in rubber molecules influence their structure and reactivity?
Answer:

  • In natural rubber (cis- 1,4-polyisoprene), double bonds are located between C2 and C3 of isoprene units.
  • The double bonds are reactive sites and helps in vulcanisation of natural rubber forming S-S linkages between chains.
  • The cis-configuration about double bonds do not allow the chains to come closer and so there are weak intermolecular attractions between the chains. This leads to coiled structure and elasticity for natural rubber.

Question 15.
Discuss the main purpose of vulcanisation of rubber.
Answer:
Natural rubber becomes soft at high temperatures (> 335K) and brittle at low temperatures (< 283 K) and shows high water absorption capacity. It is soluble in non-polar solvents and is non-resistant to attack by oxidising agents. To improve upon these physical properties, a process of vulcanisation is carried out. This process consists of heating a mixture of raw rubber with sulphur and an appropriate additive at a temperature range between 373 K and 415 K. On vulcanisation, sulphur forms cross-links at the reactive sites of double bonds and thus the rubber gets stiffened.

Question 16.
What are the monomeric repeating units of Nylon-6 and Nylon-6,6?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 10
(ii) Nylon-6,6: 1,6-Hexamethylenediamine and adipic acid.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 11

Question 17.
Write the names and structures of the monomers of the following polymers:
(i) Buna-S,
(ii) Buna-N,
(iii) Dacron,
(iv) Neoprene
Answer:
The names and structures of monomers are :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 12

Question 18.
Identify the monomer in the following polymeric structures :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 13
Answer:
The monomers forming the polymer are :
(i) Decanoic acid HOOC-(CH2)8-COOH and Hexamethylenediamine H2N-(CH2)6-NH2.
(ii)
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 14

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 19.
How is dacron obtained from ethylene glycol and terephthalic acid?
Answer:
Dacron is a synthetic condensation polymer which has ester group in the polymer chain. Terylene was also known by the name.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 15

Question 20.
What is a biodegradable polymer? Give an example of a biodegradable aliphatic polyester.
Answer:
A polymer that can be decomposed by bacteria is called a biodegradable polymer.
Poly-β-hydroxybutyrate-CO-β-hydroxy valerate (PHBV) is a biodegradable aliphatic polyester.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 16

Chemistry Guide for Class 12 PSEB Polymers Textbook Questions and Answers

Question 1.
What are polymers?
Answer:
Polymers are high molecular mass macromolecules, which consist of repeating structural units derived from monomers. Polymers have a high molecular mass (103 – 107 u). In a polymer, various monomer units are joined by strong covalent bonds. These polymers can be natural as well as synthetic. Polythene, rubber, and nylon 6, 6 are examples of polymers.

Question 2.
How are polymers classified on the basis of structure?
Answer:
Polymers are classified on the basis of structure as follows:
1. Linear polymers: These polymers are formed of long straight chains. They can be depicted as :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 17
e.g., high-density polythene (HDP), polyvinyl chloride PVC, etc.

2. Branched-chain polymers: These polymers are basically linear chain polymers with some branches. These polymers are represented as:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 18
e.g., low-density polythene (LDP), amylopectin, etc.

3. Cross-linked or Network polymers: These polymers have many cross-linking bonds that give rise to a network-like structure. These polymers contain bi-functional and tri-functional monomers and strong covalent bonds between various linear polymer chains. Examples of such polymers include bakelite and Melmac.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 19

Question 3.
Write the names of monomers of the following polymers:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 20
Answer:
(i) Hexamethylenediamine [H2N—(CH2)6—NH2] and adipic acid [HOOC—(CH2)4 —COOH].
(ii) Caprolactam
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 21
(iii) Tetrafluoroethene, (F2C – CF2).

Question 4.
Classify the following as addition and condensation polymers: Terylene, Bakelite, Polyvinyl chloride, Polythene.
Answer:
Addition polymers: Polyvinyl chloride, polythene.
Condensation polymers: Terylene, bakelite.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 5.
Explain the difference between Buna-N and Buna-S.
Answer:
Both are copolymers. Buna-N is a copolymer of 1, 3-butadiene and acrylonitrile while Buna-S is a copolymer of 1,3-butadiene and styrene.

Question 6.
Arrange the following polymers in increasing order of their intermolecular forces:
(i) Nylon-6,6, Buna-S, Polythene
(ii) Nylon-6, Neoprene, Polyvinylchloride.
Answer:
(i) Buna-S < Polythene < Nylon-6,6
(ii) Neoprene < Polyvinyl chloride < Nylon-6

PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Punjab State Board PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life Important Questions and Answers.

PSEB 12th Class Physics Important Questions Chapter 16 Chemistry in Everyday Life

Very Short Answer Type Questions

Question 1.
Where are receptors located? [NCERT Exemplar]
Answer:
Receptors are embedded in cell membrane.

Question 2.
Which site of an enzyme is called allosteric site? [NCERT Exemplar]
Answer:
Sites different from active site of enzyme where a molecule can bind and affect the active site is called allosteric site.

Question 3.
What is the harmful effect of hyperacidity? [NCERT Exemplar]
Answer:
Ulcer development in stomach.

Question 4.
Write the name of an antacid which is often used as a medicine.
Answer:
Ranitidine (Zantac).

PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 5.
What is the medicinal use of narcotic drugs? [NCERT Exemplar]
Answer:
Since narcotic drugs relieve pain and produce sleep, these are chiefly used for the relief of post-operative pain, cardiac pain and pain of terminal cancer and in childbirth.

Question 6.
Which type of drugs come under antimicrobial drugs? [NCERT Exemplar]
Answer:
Antiseptics, antibiotics and disinfectants.

Question 7.
What is the mode of action of antimicrobial drugs? [NCERT Exemplar]
Answer:
Antimicrobial drugs can kill the microorganism such as bacteria, virus, fungi or other parasites. They can, alternatively, inhibit the pathogenic action of microbes.

Question 8.
Which one of the following drugs is an antibiotic? Morphine, Equanil, Chloramphenicol, Aspirin
Answer:
Chloramphenicol.

Question 9.
What is meant by ‘narrow-spectrum antibiotics’?
Answer:
Antibiotics which are mainly effective against Gram-positive or Gram-negative bacteria are known as narrow-spectrum antibiotics. For , example, penicillin G.

Question 10.
Define the limited spectrum antibiotics.
Answer:
Antibiotics which are mainly effective against a single organism or disease, are called as limited spectrum antibiotics.

Short answer type questions

Question 1.
Why are certain drugs called enzyme inhibitors?[NCERT Exemplar]
Answer:
Enzymes have active sites that bind the substrate for effective and quick chemical reactions. The functional groups present at the active site of enzyme interact with functional groups of substrate via ionic bonding, hydrogen bonding, van der Waal’s interaction, etc. Some drugs interfere with this interaction by blocking the binding site of enzyme and prevent the binding of actual substrate with enzyme. This inhibits the catalytic activity of the enzyme, therefore, these are called inhibitors.

Question 2.
Sodium salts of some acids are very useful as food preservatives. Suggest a few such acids. [NCERT Exemplar]
Answer:
A preservative is naturally occurring or synthetically produced substance that is added to foods to prevent decomposition by microbial growth or by undesirable chemical changes. Sodium salts of some acids are very useful as food preservatives.

Some examples of such acids are as follows :

  • Benzoic acid in the form of its sodium salts constitutes one of the most common food preservatives. Sodium benzoate is a common preservative in acid or acidified foods such as fruit, juices, pickles etc. Yeasts are inhibited by benzoate to a greater extent than are moulds and bacteria.
  • Sorbic acid and its salts (sodium, potassium, and calcium) also have preservative activities but the applications of -sodium sorbate (C6H7NaO2) are limited compared to that for potassium salt.
  • Sodium erythorbate (C6H7NaO6) is a food additive used predominate in meats, poultry and soft drinks.
  • Sodium propanoate[Na(C2H5COO)] is used in bakery products as mould inhibitor.

Question 3.
What is the side product of soap industry? Give reactions showing soap formation. [NCERT Exemplar]
Answer:
Soaps are sodium or potassium salts of long-chain fatty acids such as stearic acid, oleic acid and palmitic acid. Soaps containing sodium salts are formed by heating fat (i. e., glyceryl ester of fatty acid) with aqueous sodium hydroxide solution.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 1
This reaction is known as saponification. In this reaction, esters of fatty acids are hydrolyzed and the soap obtained remains in colloidal form. It is precipitated from the solution by adding NaCl. The solution left after removing the soap contains glycerol as side product.

PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 4.
Hair shampoos belong to which class of synthetic detergent? [NCERT Exemplar]
Answer:
Hair shampoos are made up of cationic detergents. These are quaternary ammonium salts of amines with acetates, chlorides or bromides as anions, e. g., cetyltrimethylammonium bromide.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 2

Question 5.
Explain why sometimes foaming is seen in river water near the place where sewage water is poured after treatment?
[NCERT Exemplar]
Answer:
Detergents have long hydrocarbon chains. If their hydrocarbon chain is highly branched, then bacteria cannot degrade this easily. Such detergents are non-biodegradable. Slow degradation of detergents leads to their accumulation.

These non-biodegradable detergents persist in water even after sewage treatment and cause foaming in rivers, ponds and their water get polluted. In order to overcome this issue branching of the hydrocarbon chain is controlled and kept to a minimum.

Long answer type questions

Question 1.
What are enzyme inhibitors? Classify them on the basis of their mode of attachment on the active site of enzymes. With the help of diagrams explain how do inhibitors inhibit the enzymatic activity? [NCERT Exemplar]
Answer:
Enzymes are responsible to hold the substrate molecule for a chemical reaction and they provide functional groups which will attack the substrate to carry out the chemical reaction. Drugs which inhibit any of the two activities of enzymes are called enzyme inhibitors.

Enzyme inhibitors can block the binding site thereby preventing the binding of the substrate to the active site and hence inhibiting the catalytic activity of the enzyme.
Drugs inhibit the attachment of natural substrate on the active site of enzymes in two different ways as explained below :
(i) Drugs which compete with natural substrate for their attachment on the active sites of enzymes are called competitive inhibitors.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 3
(ii) Some drugs, however, do not bind to the active site but bind to a different site of the enzyme which is called allosteric site. This binding of the drug at allosteric site changes the shape of the active site of the enzyme in such a way that the natural substrate cannot recognize it. Such enzymes are called non-competitive inhibitors.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 4

Question 2.
In what respect to prontosil and salvarsan resemble? Is there any resemblance between azo dye and prontosil? Explain. [NCERT Exemplar]
Answer:
Prontosil, also called sulfamide chrysoidine, trade name of the first synthetic drug used in the treatment of general bacterial infections in humans. Prontosil resulted from research, directed by German chemist and pathologist Gerhard Domagk, on the antibacterial action of azo dyes. A red azo dye of low toxicity, prontosil was shown by Domagk to prevent mortality in mice infected with Streptococcus bacteria.

The dye was also effective in controlling staphylococcus infections in rabbits. Within a relatively short period, it was demonstrated that prontosil was effective not only in combating experimental infections in animals but also against Streptococcal disease in humans, including meningitis and puerperal sepsis. Structural formula of prontosil is as follows :
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 5
From the structure of prontosil, it is very clear that it has -N = N- linkage. It was discovered that the part of the structure of prontosil molecule shown inbox, i.e., p-amino benzene sulphonamide has antibacterial activity.
Salvarsan is also known as arsphenamine. It was introduced at the beginning of 1910s as the first effective treatment for syphilis. It is an organoarsenic molecule and has -As = As- double bond.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 6
Salvarsan and prontosil show similarity in their structure. Both of these drugs are antimicrobials. Salvarsan contains -As = As- linkage whereas prontosil has —N = N— linkage.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 7
Prontosil (a red azo dye) and azo dye both have -N = N- linkage.
PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 8

PSEB 12th Class Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 3.
Ashwin observed that his friend Shubhain was staying aloof, not playing with friends, and becoming easily irritable for some weeks. Ashwin told his teacher about this, who, in turn, called Shubham’s parents and advised them to consult a doctor. The doctor after examining Shubham prescribed antidepressant drugs for him.
After reading the above passage, answer the following questions:
(i) Name two antidepressant drugs.
(ii) Mention the values shown by Ashwin.
(iii) How should Shubham’s family help him other than providing medicine?
(iv) What is the scientific explanation for the feeling of depression?
Answer:
(i) Equanil, Iproniazid, phenelzine (any two)
(ii) Empathetic, caring, sensitive.
(iii) They should talk to him, be a patient listener, can discuss the matter with the psychologist.
(iv) If the level of noradrenaline is low, then the signal sending activity becomes low and the person suffers from depression.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 16 Chemistry in Everyday Life Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 16 Chemistry in Everyday Life

PSEB 12th Class Chemistry Guide Chemistry in Everyday Life InText Questions and Answers

Question 1.
Why do we need to classify drugs in different ways?
Answer:
Different ways of classification of drugs and the usefulness of such classification are as follows :

  1. Classification on the basis of pharmacological effect is useful for doctors because it provides them the whole range of drugs available for the treatment of a particular type of problem.
  2. Classification on the basis of drug action on a particular biochemical process is useful for choosing the correct lead compound for designing the synthesis of a desired drug.
  3. Classification on the basis of molecular targets is useful for medicinal chemists so that they can design a drug which is most effective for a particular receptor site.
  4. Classification on the basis of chemical structure is useful for doctors to design the synthesis of a number of structurally similar compounds having different substituents and then choosing the drug having the least toxicity.

Question 2.
Explain the term target molecules or drug targets as used in medicinal chemistry.
Answer:
Drugs interact with macromolecules such as proteins, carbohydrates, lipids, enzymes and nucleic acids. Hence, these are called drug targets. Drugs possessing some common structural features may have the same mechanism of action on targets.

Question 3.
Name the macro-molecules that are chosen as drug targets.
Answer:
Nucleic acids, proteins, carbohydrates, lipids, enzymes are chosen as drug targets.

Question 4.
Why should not medicines be taken without consulting doctors?
Answer:
Side effects are caused when a drug binds to more than one receptor site. So, a doctor must be consulted to choose the right drug which has the maximum affinity for a particular receptor site to have the desired effect. The dose of the drug is also crucial because some drugs like opiates in higher doses act as poisons and may cause death.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 5.
Define the term chemotherapy.
Answer:
The branch of chemistry which deals with the treatment of diseases using chemicals is called chemotherapy.

Question 6.
Which forces are involved in holding the drugs to the active site of enzymes?
Answer:
Ionic bonding, hydrogen bonding, van der Waals’ interaction, dipole-dipole interaction etc., are involved in holding the drugs to the active site of enzymes.

Question 7.
While antacids and antiallergic drugs interfere with the function of histamines, why do these not interfere with the function of each other?
Answer:
These (antacids and antiallergic drugs) do not interfere with the function of each other because they work on different receptors in the body.

Question 8.
Low level of noradrenaline is the cause of depression. What type of drugs are needed to cure this problem? Name two drugs.
Answer:
In event of low level of neurotransmitters, noradrenaline, antidepressant drugs are required. These drugs inhibit the enzymes which catalyse the degradation of noradrenaline. If the enzyme is inhibited, noradrenaline is slowly metabolised and thus activates its receptor for longer periods of time thereby reducing depression. Two important drugs are iproniazid and phenelzine.

Question 9.
What is meant by the term ‘broad-spectrum antibiotics? Explain.
Answer:
Broad-spectrum antibiotics are effective against several different types of harmful bacteria. Examples are tetracycline, ofloxacin, chloramphenicol, etc. Chloramphenicol can be used in case of typhoid, acute fever, dysentery, urinary infections, meningitis and pneumonia.

Question 10.
How do antiseptics differ from disinfectants? Give one example of each.
Answer:
Differences between antiseptics and disinfectants are as follows :
Antiseptics

  • Antiseptics are chemical substances which prevent the growth of microorganisms and may even kill them but are not harmful to living tissues.
  • Antiseptics are generally applied to living tissues such as wounds, cuts, ulcers and diseased skin surfaces.
  • Dettol, furnace, soframicine are antiseptics.

Disinfectants

  • Disinfectants are chemical substances which kill microorganisms or stop their growth but are harmful to human tissues.
  • Disinfectants are applied to inanimate objects such as floor, drainage system, instruments, etc.
  • Chlorine in the concentration of 0.2 to 0.4 ppm in aqueous solution and SO 2 in very low concentration are disinfectants.

Question 11.
Why are cimetidine and ranitidine better antacids than sodium hydrogen carbonate or magnesium or aluminium hydroxide?
Answer:
Excessive use of sodium hydrogen carbonate or a mixture of aluminium and magnesium hydroxide can make the stomach alkaline and trigger the production of even more acid. On the other hand, ranitidine and cimetidine prevent the interaction of histamine with the receptors present in the stomach wall. This results in release of lesser amount of acid. Thus, these are better antacids.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 12.
Name a substance which can be used as an antiseptic as well as disinfectant.
Answer:
0.2% solution of phenol acts as an antiseptic while 1% of the solution acts as a disinfectant.

Question 13.
What are the main constituents of Dettol?
Answer:
Chloroxylenol and a-terpineol in a suitable solvent.

Question 14.
What is tincture of iodine? What is its use?
Answer:
A 2-3 per cent solution of iodine in alcohol-water mixture is known as tincture of iodine. It is used as an antiseptic.

Question 15.
What are food preservatives?
Answer:
Chemical substances which are used to protect food against bacteria, yeasts and moulds are called food preservatives. For example, sodium metabisulphite, sodium benzoate, etc.

Question 16.
Why is the use of aspartame limited to cold foods and drinks?
Answer:
Aspartame decomposes on heating and may not work well. So, its use as an artificial sweetener is limited to foods and drinks at low temperatures.

Question 17.
What are artificial sweetening agents? Give two examples.
Answer:
Artificial sweetening agents are the chemical substances which provide sweetness to the food without increasing the calories to the body. For example, saccharin, aspartame, sucralose etc.

Question 18.
Name the sweetening agent used in the preparation of sweets for a diabetic patient.
Answer:
Saccharin.

Question 19.
What problem arises in using alitame as artificial sweetener?
Answer:
Alitame is a high potency artificial sweetener. Therefore, it becomes difficult to control die level of sweetness while using it.

Question 20.
How are synthetic detergents better than soaps?
Answer:
Advantages of synthetic detergents over soaps :

  • Detergents can work with hard water too while soaps cannot.
  • They can work even in an acidic medium while soaps cannot.
  • Synthetic detergents are stronger cleansing agents than soaps.
  • Their solubility is higher than that of soaps.
  • They are prepared from hydrocarbons (petroleum) so their use is to save vegetable oils which are used during the preparation of soaps.

Question 21.
Explain the following terms with suitable examples :
(i) Cationic detergents
(ii) Anionic detergents and
(iii) Non-ionic detergents
Answer:
(i) Cationic detergents: These are quaternary ammonium salts of amines with acetates, chlorides or bromides.
Example: Cetyl trimethyl ammonium bromide
(ii) Anionic detergents: These detergents have large anionic part in their molecules. These are of two types :
(a) Sodium alkyl sulphates: For example, Sodium lauryl sulphate CH3 (CH2)10 CH2OSO3Na+.
(b) Sodium alkyl benzene sulphonates: For example, sodium dodecylbenzene sulphonate
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 1
(iii) Non-ionic detergents: These are esters of high molecular mass alcohols with fatty acids. For example, Polyethylene glycol stearate.
CH3 (CH2)16 COO(CH2CH2O)nCH2CH2OH.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 22.
What are biodegradable and non-biodegradable detergents? Give one example of each.
Answer:
Detergents having straight hydrocarbon chains are easily degraded by microorganisms and hence are called biodegradable detergents, whereas detergents containing branched hydrocarbon chains are not easily degraded by the microorganisms and hence are called non-biodegradable detergents. As a result, non-biodegradable detergents accumulate in rivers and waterways thereby causing severe water pollution.

Examples of biodegradable detergents are : sodium lauryl sulphate, sodium 4-(l-dodecyl) benzene-sulphonate and sodium 4-(2-dodecyl) benzenesulphonate. An example of non-biodegradable detergent is sodium 4-(l, 3, 5, 7-tetramethyloctyl) benzenesulphonate.

Question 23.
Why do soaps not work with hard water?
Answer:
Calcium and magnesium salts present in hard water react with soaps to form insoluble compounds, which form curdy white precipitates and are difficult to remove from the clothes.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 2

Question 24.
Can you use soaps and synthetic detergents to check the hardness of water?
Answer:
We can use soaps to check the hardness of water because with hard water, soaps give a gummy mass (sticky precipitate) but we cannot use detergents for this purpose because they give foam with both hard and soft water.

Question 25.
Explain the cleansing action of soaps.
Answer:
The cleansing action of soap is due to the fact that soap molecules, such as sodium stearate form micelle around the oil droplet in such a way that hydrophobic part of the stearate ions is in the oil droplet and hydrophilic part projects out of the oil droplet like the bristles.

Since the polar groups can interact with water, the oil droplet surrounded by stearate ions is now pulled in water and removed from the dirty surface. Thus, soap helps in emulsification and washing away of oils and fats. The negatively charged sheath around the globules prevents them from coming together and forming aggregates.
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 3

Question 26.
If the water contains dissolved calcium hydrogen carbonate, out of soaps and synthetic detergents which one will you use for cleaning clothes?
Answer:
Synthetic detergents.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 27.
Label the hydrophilic and hydrophobic parts in the following compounds.
(i) CH3(CH2)10CH2OSO3Na+
(ii) CH3(CH2)15N+(CH3)3 Br
(iii) CH3(CH2)16COO(CH2CH2O)n CH2CH2OH
Answer:

Chemistry Guide for Class 12 PSEB Chemistry in Everyday Life Textbook Questions and Answers

Question 1.
Sleeping pills are recommended by doctors to the patients suffering from sleeplessness but It is not advisable to take Its doses without consultation with the doctor. Why?
Answer:
Sleeping pills contain drugs that may be tranquillizers or antidepressants. They affect the nervous system, relieve anxiety, stress, irritability or excitement. But they should strictly be used under the supervision of a doctor. If not, the uncontrolled and overdosage can cause harm to the body and mind because in higher doses these drugs act as poisons.

Question 2.
With reference to which classification has the statement, “ranitidine is an antacid” been given?
Answer:
This statement refers to the classification according to the pharmacological effect of the drug because any drug which will be used to counteract the effect of excess acid in the stomach will be called antacid.

Question 3.
Why do we require artifical sweetening agents?
Answer:
Natural sweeteners (sucrose etc.) provide calories to the body. Taking extra calories is harmful for diabetic patients. So, artificial sweeteners are used (i) to control intake of calories and (ii) as a substitute of sugar for diabetics.

Question 4.
Write the chemical equation for preparing sodium soap from glyceryl oleate and glyceryl palmitate. Structural formulae of these compounds are given below.
(i) (C15H31COO)3C3H5 – Glyceryl pfi]mitate
(ii) (C17H32COO)3C3H5 – Glyceryl oleate
Answer:

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 5

Question 5.
Following types of non-ionic detergents are present in liquid detergents, emulsifying agents and wetting agents. Label the hydrophilic and hydrophobic parts In the molecule. Identify the functional group(s) present In the molecule.
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 6
Answer:
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 7
(b) Functional groups: Ether and alcohol.