PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Padnav ਪੜਨਾਂਵ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਪੜਨਾਂਵ

ਪ੍ਰਸ਼ਨ 1.
ਪੜਨਾਂਵ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਇਸ ਦੇ ਕਿੰਨੇ ਭੇਦ ਹਨ ? ਉਦਾਹਰਨਾਂ ਦੇ ਕੇ ਸਮਝਾਓ ।
ਜਾਂ
ਪੜਨਾਂਵ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਇਸਦੀਆਂ ਕਿਸਮਾਂ ਕਿਹੜੀਆਂ-ਕਿਹੜੀਆਂ ਹਨ ? ਉਦਾਹਰਨਾਂ ਦੇ ਕੇ ਦੱਸੋ ।
ਉੱਤਰ :
ਵਾਕ ਵਿਚ ਜਿਹੜਾ ਸ਼ਬਦ ਕਿਸੇ ਨਾਂਵ ਦੀ ਜਗ੍ਹਾ ਵਰਤਿਆ ਜਾਵੇ, ਉਹ ਪੜਨਾਂਵ ਅਖਵਾਉਂਦਾ ਹੈ; ਜਿਵੇਂ-ਮੈਂ, ਅਸੀਂ, ਸਾਡਾ, ਤੂੰ, ਤੁਸੀਂ, ਤੁਹਾਡਾ, ਇਹ, ਉਹ, ਆਪ ਆਦਿ ।

ਪੜਨਾਂਵ ਛੇ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ-
1. ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੇ ਪੜਨਾਂਵ ਕੇਵਲ ਕਿਸੇ ਪੁਰਖ ਦੀ ਥਾਂ ਹੀ ਵਰਤੇ ਜਾਣ, ਉਨ੍ਹਾਂ ਨੂੰ “ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ” ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-
ਮੈਂ, ਅਸੀਂ, ਤੂੰ, ਤੁਸੀਂ, ਉਹ ਆਦਿ ।
ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਤਿੰਨ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ
(ੳ) ਉੱਤਮ (ਪਹਿਲਾ) ਪੁਰਖ : ਵਾਕ ਵਿਚ ਗੱਲ ਕਰਨ ਵਾਲੇ ਵਿਅਕਤੀ ਨੂੰ ਉੱਤਮ ਪੁਰਖ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-ਮੈਂ, ਮੈਥੋਂ, ਮੇਰਾ, ਮੈਨੂੰ, ਅਸੀਂ, ਸਾਨੂੰ, ਸਾਡਾ, ਸਾਡੇ, ਸਾਡੀ, ਸਾਡੀਆਂ, ਸਾਥੋਂ ਆਦਿ ।

(ਅ) ਮੱਧਮ (ਦੂਜਾ) ਪੁਰਖ : ਵਾਕ ਵਿਚ ਜਿਸ ਨਾਲ ਗੱਲ ਕੀਤੀ ਜਾਵੇ, ਉਹ “ਮੱਧਮ ਪੁਰਖ’ ਹੁੰਦਾ ਹੈ; ਜਿਵੇਂ-ਤੂੰ, ਤੁਸੀਂ, ਤੁਹਾਡਾ, ਤੁਹਾਡੇ, ਤੁਹਾਡੀ, ਤੁਹਾਡੀਆਂ, ਤੈਨੂੰ ਤੁਹਾਨੂੰ, ਤੇਰਾ, ਤੇਰੇ, ਤੁਹਾਥੋਂ ਆਦਿ ।
ਅਨਯ (ਤੀਜਾ) ਪੁਰਖ-ਵਾਕ ਵਿਚ ਜਿਸ ਬਾਰੇ ਗੱਲ ਕੀਤੀ ਜਾਵੇ, ਉਸ ਨੂੰ ‘ਅਨਯ ਪੁਰਖ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-ਉਹ, ਇਹ, ਉਨ੍ਹਾਂ ਆਦਿ ।

2. ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜਾ ਪੜਨਾਂਵ ਕਰਤਾ ਦੀ ਥਾਂ ਵਰਤਿਆ ਜਾਵੇ, ਜਾਂ ਕਰਤਾ ਦੇ ਨਾਲ ਆ ਕੇ ਉਸ ਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਦੱਸੇ, ਉਸ ਨੂੰ “ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ” ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-ਮਨੁੱਖ ਆਪਣੀ ਕਿਸਮਤ ‘ਆਪ’ ਬਣਾਉਂਦਾ ਹੈ । (ਅ) ਮੈਂ ‘ਆਪ’ ਉੱਥੇ ਗਿਆ ।

ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਪਹਿਲੇ ਵਾਕ ਵਿਚ ‘ਆਪ’ ਪੜਨਾਂਵ ਕਰਤਾ ‘ਮਨੁੱਖ’ ਦੀ ਥਾਂ ‘ਤੇ ਵਰਤਿਆ ਗਿਆ ਹੈ, ਪਰ ਦੂਜੇ ਵਾਕ ਵਿਚ ‘ਆਪ’ ਪੜਨਾਂਵ ‘ ਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ, ਇਸ ਕਰਕੇ ਇਹ ‘ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ ਹੈ ।

ਪੰਜਾਬੀ ਵਿਚ ‘ਆਪ’ ਸ਼ਬਦ ਹਮੇਸ਼ਾਂ ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ ਨਹੀਂ ਹੁੰਦਾ | ਅਸੀਂ ਆਦਰ ਵਜੋਂ ‘ਤੂੰ ਦੀ ਥਾਂ ‘ਤੁਸੀਂ ਜਾਂ ‘ਆਪ’ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ, ਤਾਂ ‘ਆਪ’ ਸ਼ਬਦ ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਹੁੰਦਾ ਹੈ । ਜਦੋਂ ‘ਆਪ’ ਸ਼ਬਦ ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਹੋਵੇ, ਤਾਂ ਇਹ ਇਕ-ਵਚਨ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਬਹੁ-ਵਚਨ ਵੀ ।ਇਸ ਅਵਸਥਾ ਵਿਚ ਇਹ ਤਿੰਨਾਂ ਹੀ ਪੁਰਖਾਂ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਜਿਸ ਨਾਂਵ ਜਾਂ ਪੜਨਾਂਵ ਦੀ ਥਾਂ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਉਹ ਉਸੇ ਵਾਕ ਵਿਚ ਹੁੰਦਾ ਹੈ , ਜਿਵੇਂ
“ਉਹ ਮੈਨੂੰ ‘ਆਪ’ ਮਿਲਣ ਲਈ ਆਇਆ ।

PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

3. ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜਾ ਸ਼ਬਦ ਪੜਨਾਂਵ ਹੁੰਦਾ ਹੋਇਆ ਵੀ ਯੋਜਕ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਨ ਦਾ ਕੰਮ ਕਰੇ, ਉਸ ਨੂੰ ‘ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ ; ਜਿਵੇਂ-
(ੳ) ‘ਰਾਮ ਉਸੇ ਵਿਦਿਆਰਥੀ ਦਾ ਨਾਂ ਹੈ, ਜਿਹੜਾ ਕਲਾਸ ਵਿਚ ਬਹੁਤ ਰੌਲਾ ਪਾਉਂਦਾ ਹੈ ।
(ਅ) ‘ਉਹ, ਜੋ ਆਪਸ ਵਿਚ ਪਿਆਰ ਕਰਦੇ ਹਨ, ਸੁਖੀ ਵਸਦੇ ਹਨ ।
(ੲ) ‘ਸੁਰਿੰਦਰ, ਜਿਸ ਨੇ ਸੁਰਜੀਤ ਨੂੰ ਮਾਰਿਆ ਸੀ, ਦੌੜ ਗਿਆ ਹੈ । ਇਨ੍ਹਾਂ ਵਾਕਾਂ ਵਿਚ ‘ਜਿਹੜਾ’, ‘ਜੋ’ ਅਤੇ ‘ਜਿਸ ਆਦਿ ਸ਼ਬਦ ਯੋਜਕਾਂ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਦੇ ਹਨ, ਇਸ ਕਰਕੇ ਇਹ ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ ਹਨ ।

ਕਈ ਵਾਕਾਂ ਵਿਚ ‘ਜੋ’ ਅਤੇ ‘ਜਿਹੜਾ’ ਦੇ ਨਾਲ ‘ਸੋ’ ਅਤੇ ‘ਉਹ’ ਪੜਨਾਂਵ ਵੀ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜਿਵੇਂ-ਜਿਹੜੇ ਹਰ ਰੋਜ਼ ਸੈਰ ਕਰਦੇ ਹਨ, ਉਹ ਕਦੇ ਰੋਗੀ ਨਹੀਂ ਹੁੰਦੇ । ਇਸ ਵਾਕ ਵਿਚ ‘ਜਿਹੜੇ ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ ਹਨ, ਪਰ ‘ਉਹ’ ਪੜਨਾਂਵ ਵਾਕਾਂ ਨੂੰ ਜੋੜਦੇ ਨਹੀਂ, ਇਸ ਕਰਕੇ ਇਸ ਨੂੰ “ਅਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ।

4. ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਪੜਨਾਂਵ ਵੀ ਹੋਣ ਅਤੇ ਉਨ੍ਹਾਂ ਰਾਹੀਂ ਪ੍ਰਸ਼ਨ ਵੀ ਪੁੱਛਿਆ ਜਾਵੇ, ਉਨ੍ਹਾਂ ਨੂੰ “ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-(ੳ) ‘ਇੱਥੋਂ ਕੀ ਲੈਣਾ ਹੈ ? (ਅ ‘ਸਲੇਟ ਕਿਸ ਨੇ ਤੋੜੀ ਹੈ ?’ (ਬ ‘ਕੌਣ ਰੌਲਾ ਪਾ ਰਿਹਾ ਹੈ ?’ (ਸ) “ਕਿਹੜਾ ਇਹ ਗੱਲਾਂ ਕਰਦਾ ਸੀ ?’ ਇਨ੍ਹਾਂ ਵਾਕਾਂ ਵਿਚ ‘ਕੀ’, ‘ਕਿਸ’, ‘ਕੌਣ’ ਅਤੇ ‘ਕਿਹੜਾ’ ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ ਹਨ ।

5. ਨਿਸ਼ਚੇਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜੇ ਪੜਨਾਂਵ ਕਿਸੇ ਦੂਰ ਜਾਂ ਨੇੜੇ ਦੀ ਦਿਸਦੀ ਚੀਜ਼ ਵਲ ਇਸ਼ਾਰਾ ਕਰ ਕੇ ਉਸ ਦੇ ਨਾਂ ਦੀ ਥਾਂ ਤੇ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਨਿਸ਼ਚੇਵਾਚਕ ਪੜਨਾਂਵ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-
(ੳ) “ਉਹ ਗੀਤ ਗਾ ਰਹੀਆਂ ਹਨ ।
(ਆ) “ਔਹ ਕੀ ਆ ਰਿਹਾ ਹੈ ।
(ੲ) ‘ਇਹ ਕਹਿੰਦਾ ਹੈ ਕਿ ਸਾਰਾ ਕੰਮ ਉਸ ਨੇ ਵਿਗਾੜਿਆ ਹੈ ।
(ਸ) ‘ਉਨ੍ਹਾਂ ਨੇ ਇਸ ਸਮੇਂ ਆਹ ਕੰਮ ਨਹੀਂ ਕਰਨਾ । ਇਨ੍ਹਾਂ ਵਾਕਾਂ “ਉਹ” , “ਔਹ “ਇਹ’ ‘ਉਸ’, ‘ਆਹ’ ਨਿਸਚੇਵਾਚਕ ਪੜਨਾਂਵ ਹਨ ।

6. ਅਨਿਸਚਿਤ ਅਨਿਸਚੇਵਾਚਕ ਪੜਨਾਂਵ :
ਜੋ ਪੜਨਾਂਵ ਕਿਸੇ ਚੀਜ਼ ਦਾ ਅੰਦਾਜ਼ਾ ਤਾਂ ਦੱਸੇ, ਪਰ ਉਸ ਦੀ ਗਿਣਤੀ ਨਾ ਦੱਸੇ, ਉਸ ਨੂੰ ‘ਅਨਿਸਚਿਤ ਪੜਨਾਂਵ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-
(ਉ) ‘ਸਾਰੇ ਗੀਤ ਗਾ ਰਹੇ ਹਨ ।’
(ਅ) ‘ਸਰਬੱਤ ਦਾ ਭਲਾ ਮੰਗੋ ।
(ੲ)‘ਇੱਥੇ ਕਈ ਆਉਂਦੇ ਹਨ, ਪਰ ਕਰਦੇ ਕੁੱਝ ਨਹੀਂ ।’
(ਸ) ‘ਬਾਜ਼ੇ ਬੜੇ ਬੇਵਕੂਫ਼ ਹੁੰਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਵਾਕਾਂ ਵਿਚ ‘ਸਾਰੇ’, ‘ਸਰਬੱਤ’, ‘ਕਈ’, ‘ਕੁੱਝ’ ਅਤੇ ‘ਬਾਜ਼’ ਅਨਿਸਚਿਤ ਪੜਨਾਂਵ ਹਨ ।
ਇਨ੍ਹਾਂ ਪੜਨਾਵਾਂ ਵਿਚੋਂ ‘ਸਭ’, ‘ਸਾਰੇ’, ‘ਅਨੇਕਾਂ’, ‘ਸਰਬੱਤ` ਅਤੇ ਉਹ ਸਾਰੇ ਪੜਨਾਂਵ, ਜਿਨ੍ਹਾਂ ਦੇ ਅੰਤ ਵਿਚ ਲਾਂ () ਆਉਂਦੀ ਹੈ, ਸਦਾ ਹੀ ਬਹੁ-ਵਚਨ ਹੁੰਦੇ ਹਨ ।

ਕਈ ਪੜਨਾਂਵ ਦੋਹਾਂ ਵਚਨਾਂ ਵਿਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜਿਵੇਂ-
(ਉ) ਕੋਈ ਗੀਤ ਗਾਏਗਾ । (ਇਕ-ਵਚਨ)
(ਅ) ਕੋਈ ਗੀਤ ਗਾਉਣਗੇ । (ਬਹੁ-ਵਚਨ)

PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

ਪ੍ਰਸ਼ਨ 2.
ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ ?
ਉੱਤਰ :
ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਪੜਨਾਂਵ ਵੀ ਹੋਣ ਅਤੇ ਉਨ੍ਹਾਂ ਰਾਹੀਂ ਪ੍ਰਸ਼ਨ ਵੀ ਪੁੱਛਿਆ ਜਾਵੇ, ਉਨ੍ਹਾਂ ਨੂੰ “ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-
(ੳ) ‘ਇੱਥੋਂ ਕੀ ਲੈਣਾ ਹੈ ?
(ਅ) ‘ਸਲੇਟ ਕਿਸ ਨੇ ਤੋੜੀ ਹੈ ?’
(ੲ) ‘ਕੌਣ ਰੌਲਾ ਪਾ ਰਿਹਾ ਹੈ ?’
(ਸ) “ਕਿਹੜਾ ਇਹ ਗੱਲਾਂ ਕਰਦਾ ਸੀ ?’ ਇਨ੍ਹਾਂ ਵਾਕਾਂ ਵਿਚ ‘ਕੀ’, ‘ਕਿਸ’, ‘ਕੌਣ’ ਅਤੇ ‘ਕਿਹੜਾ’ ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ ਹਨ ।

ਪ੍ਰਸ਼ਨ 3.
ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ?
ਉੱਤਰ :
ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜਾ ਪੜਨਾਂਵ ਕਰਤਾ ਦੀ ਥਾਂ ਵਰਤਿਆ ਜਾਵੇ, ਜਾਂ ਕਰਤਾ ਦੇ ਨਾਲ ਆ ਕੇ ਉਸ ਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਦੱਸੇ, ਉਸ ਨੂੰ “ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ” ਆਖਿਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-ਮਨੁੱਖ ਆਪਣੀ ਕਿਸਮਤ ‘ਆਪ’ ਬਣਾਉਂਦਾ ਹੈ । (ਅ) ਮੈਂ ‘ਆਪ’ ਉੱਥੇ ਗਿਆ ।

ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਪਹਿਲੇ ਵਾਕ ਵਿਚ ‘ਆਪ’ ਪੜਨਾਂਵ ਕਰਤਾ ‘ਮਨੁੱਖ’ ਦੀ ਥਾਂ ‘ਤੇ ਵਰਤਿਆ ਗਿਆ ਹੈ, ਪਰ ਦੂਜੇ ਵਾਕ ਵਿਚ ‘ਆਪ’ ਪੜਨਾਂਵ ‘ ਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ, ਇਸ ਕਰਕੇ ਇਹ ‘ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ ਹੈ ।

ਪੰਜਾਬੀ ਵਿਚ ‘ਆਪ’ ਸ਼ਬਦ ਹਮੇਸ਼ਾਂ ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ ਨਹੀਂ ਹੁੰਦਾ | ਅਸੀਂ ਆਦਰ ਵਜੋਂ ‘ਤੂੰ ਦੀ ਥਾਂ ‘ਤੁਸੀਂ ਜਾਂ ‘ਆਪ’ ਦੀ ਵਰਤੋਂ ਕਰਦੇ ਹਾਂ, ਤਾਂ ‘ਆਪ’ ਸ਼ਬਦ ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਹੁੰਦਾ ਹੈ । ਜਦੋਂ ‘ਆਪ’ ਸ਼ਬਦ ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ ਹੋਵੇ, ਤਾਂ ਇਹ ਇਕ-ਵਚਨ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ਅਤੇ ਬਹੁ-ਵਚਨ ਵੀ ।ਇਸ ਅਵਸਥਾ ਵਿਚ ਇਹ ਤਿੰਨਾਂ ਹੀ ਪੁਰਖਾਂ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਹ ਜਿਸ ਨਾਂਵ ਜਾਂ ਪੜਨਾਂਵ ਦੀ ਥਾਂ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ, ਉਹ ਉਸੇ ਵਾਕ ਵਿਚ ਹੁੰਦਾ ਹੈ , ਜਿਵੇਂ
“ਉਹ ਮੈਨੂੰ ‘ਆਪ’ ਮਿਲਣ ਲਈ ਆਇਆ ।

ਪ੍ਰਸ਼ਨ 4.
ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ ਦੀਆਂ ਕੋਈ ਦੋ ਉਦਾਹਰਨਾਂ ਦਿਓ ।
ਉੱਤਰ :
ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ :
ਜਿਹੜਾ ਸ਼ਬਦ ਪੜਨਾਂਵ ਹੁੰਦਾ ਹੋਇਆ ਵੀ ਯੋਜਕ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਨ ਦਾ ਕੰਮ ਕਰੇ, ਉਸ ਨੂੰ ‘ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ ; ਜਿਵੇਂ-
(ੳ) ‘ਰਾਮ ਉਸੇ ਵਿਦਿਆਰਥੀ ਦਾ ਨਾਂ ਹੈ, ਜਿਹੜਾ ਕਲਾਸ ਵਿਚ ਬਹੁਤ ਰੌਲਾ ਪਾਉਂਦਾ ਹੈ ।
(ਅ) ‘ਉਹ, ਜੋ ਆਪਸ ਵਿਚ ਪਿਆਰ ਕਰਦੇ ਹਨ, ਸੁਖੀ ਵਸਦੇ ਹਨ ।
(ੲ) ‘ਸੁਰਿੰਦਰ, ਜਿਸ ਨੇ ਸੁਰਜੀਤ ਨੂੰ ਮਾਰਿਆ ਸੀ, ਦੌੜ ਗਿਆ ਹੈ । ਇਨ੍ਹਾਂ ਵਾਕਾਂ ਵਿਚ ‘ਜਿਹੜਾ’, ‘ਜੋ’ ਅਤੇ ‘ਜਿਸ ਆਦਿ ਸ਼ਬਦ ਯੋਜਕਾਂ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਆਪਸ ਵਿਚ ਜੋੜਦੇ ਹਨ, ਇਸ ਕਰਕੇ ਇਹ ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ ਹਨ ।

PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

ਪ੍ਰਸ਼ਨ 5.
ਹੇਠ ਲਿਖੇ ਪੜਨਾਂਵਾਂ ਦੇ ਸਾਹਮਣੇ ਉਨ੍ਹਾਂ ਦੀ ਕਿਸਮ ਲਿਖੋ-
(ੳ) ਮੈਂ, ਅਸੀਂ
(ਅ) ਕਿਸ ਨੇ, ਕਿਹੜਾ
(ਬ) ਉਹ, ਇਹ
(ਸ) ਤੁਹਾਡਾ, ਤੁਹਾਨੂੰ
(ਹ) ਕੌਣ, ਕਿਹੜਾ
(ਕ) ਆਪ, ਆਪਸ
(ਖ) ਜੋ, ਸੋ
(ਗ) ਜਿਹੜੇ
(ਘ) ਕਈ, ਬਹੁਤ ਸਾਰੇ
(ਛ) ਅਹੁ, ਆਹ ।
ਉੱਤਰ :
(ੳ) ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ
(ਅ) ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ
(ਇ) ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ
(ਸ) ਪੁਰਖਵਾਚਕ ਪੜਨਾਂਵ
(ਹ) ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ
(ਕ) ਨਿੱਜਵਾਚਕ ਪੜਨਾਂਵ
(ਖ) ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ
(ਗ) ਸੰਬੰਧਵਾਚਕ ਪੜਨਾਂਵ
(ਘ) ਅਨਿਸਚੇਵਾਚਕ ਪੜਨਾਂਵ
(ਛ) ਨਿਸਚੇਵਾਚਕ ਪੜਨਾਂਵ ।

ਪਪ੍ਰਸ਼ਨ 6.
ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਪੜਨਾਂਵ ਚੁਣੋ ਤੇ ਸਾਹਮਣੇ ਲਿਖੋ-
(ਉ) ਮਿਰਚ, ਫੁੱਲ, ਦਿੱਲੀ, ਆਪ
(ਅ) ਕੌਣ, ਲੜਕੀ, ਕੱਪੜਾ, ਸਾਡੇ
(ਇ) ਜਲੰਧਰ, ਜਿਹੜਾ, ਮੈਂ, ਅਸੀਂ
(ਸ) ਕਿਸ ਨੇ, ਗੀਤ, ਵਿਸ਼ਾਲ, ਹੈ
(ਹ) ਘਰ, ਮੇਰਾ, ਉਹ, ਗਿਆ
ਉੱਤਰ :
(ੳ) ਆਪ
(ਅ) ਕੌਣ, ਸਾਡੇ
(ਈ) ਮੈਂ, ਜਿਹੜਾ, ਅਸੀਂ,
(ਸ) ਕਿਸਨੇ
(ਹ) ਮੇਰਾ, ਉਹ ।

PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚੋਂ ਪੜਨਾਂਵ ਚੁਣੋ ਤੇ ਸਾਹਮਣੇ ਲਿਖੋ-
(ੳ) ਉਸ ਦਾ ਭਰਾ ਬੜਾ ਬੇਈਮਾਨ ਹੈ ।
(ਅ) ਤੁਹਾਨੂੰ ਆਪ ਇਹ ਕੰਮ ਕਰਨਾ ਚਾਹੀਦਾ ਸੀ ।
(ਈ) ਕੌਣ-ਕੌਣ ਜਮਾਤ ਵਿਚ ਹਾਜ਼ਰ ਨਹੀਂ ਸਨ ।
(ਸ) ਕਈ ਲੋਕ ਘਰ ਨੂੰ ਜਾ ਰਹੇ ਸਨ ।
(ਹ) ਜੋ ਕਰੇਗਾ ਸੋ ਭਰੇਗਾ ।
(ਕ) ਤੁਹਾਡੇ ਪਿਤਾ ਜੀ ਕੀ ਕਰਦੇ ਸਨ ?
(ਖ) ਅਹਿ ਕਿਸ ਦਾ ਪੈਂਨ ਹੈ ?
(ਗ) ਗਰੀਬ ਨਾਲ ਕੋਈ-ਕੋਈ ਹਮਦਰਦੀ ਕਰਦਾ ਹੈ ।
ਉੱਤਰ :
(ੳ) ਉਸ
(ਅ) ਤੁਹਾਨੂੰ, ਆਪ,
(ਈ) ਕੌਣ-ਕੌਣ
(ਸ) ਕੋਈ (ਨੋਟ-ਇਹ ਪੜਨਾਂਵ ਨਹੀਂ, ਸਗੋਂ ਪੜਨਾਵੀਂ ਵਿਸ਼ੇਸ਼ਣ ਹੈ, ਜੇਕਰ ਇਸ ਨਾਲ ‘ਲੋਕ ਸ਼ਬਦ ਨਾ ਲੱਗਾ ਹੋਵੇ , ਤਾਂ ਇਹ ਪੜਨਾਂਵ ਹੋਵੇਗਾ
(ਹ) ਜੋ, ਸੋ,
(ਕ) ਕੀ
(ਖ) ਅਹਿ, ਕਿਸ
(ਗ) ਕੋਈ-ਕੋਈ ।

PSEB 8th Class Punjabi Vyakaran ਪੜਨਾਂਵ

ਪ੍ਰਸ਼ਨ 8.
ਖ਼ਾਲੀ ਥਾਂਵਾਂ ਭਰੋ-
(ੳ) ਜਿਹੜੇ ਪੁਰਖ ਨਾਲ ਗੱਲ ਕੀਤੀ ਜਾਵੇ ……… ਪੁਰਖ ਹੁੰਦਾ ਹੈ ।
(ਅ) ਜਿਸ ਪੁਰਖ ਬਾਰੇ ਗੱਲ ਕੀਤੀ ਜਾਵੇ ……… ਪੁਰਖ ਹੁੰਦਾ ਹੈ ।
(ਇ) ਨਾਂਵ ਦੀ ਥਾਂ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਸ਼ਬਦ ……… ਕਹਾਉਂਦੇ ਹਨ ।
(ਸ) : ਜਿਹੜੇ ਸ਼ਬਦ ਯੋਜਕਾਂ ਵਾਂਗ ਦੋ ਵਾਕਾਂ ਨੂੰ ਜੋੜਨ ……… ਪੜਨਾਂਵ ਹੁੰਦੇ ਹਨ ।
ਉੱਤਰ :
(ੳ) ਮੱਧਮ
(ਅ) ਅਨਯ
(ਇ) ਪੜਨਾਂਵ
(ਸ) ਸੰਬੰਧਵਾਚਕ ।

ਪ੍ਰਸ਼ਨ 9.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚੋਂ ਠੀਕ ਵਾਕਾਂ ਦੇ ਸਾਹਮਣੇ (✓) ਤੇ ਗ਼ਲਤ ਵਾਕਾਂ ਦੇ ਸਾਹਮਣੇ (✗) ਦਾ ਨਿਸ਼ਾਨ ਲਗਾਓ

(ਉ) ਗੱਲ ਕਰਨ ਵਾਲਾ ਪੁਰਖ ਉੱਤਮ ਪੁਰਖ ਹੁੰਦਾ ਹੈ ।
(ਅ) ਜੋ ਸ਼ਬਦ ਕਿਸੇ ਵਿਅਕਤੀ, ਵਸਤੂ, ਜਗਾ ਦਾ ਨਾਂ ਦੱਸਣ, ਪੜਨਾਂਵ ਕਹਾਉਂਦੇ ਹਨ ।
(ੲ) ਜਿਹੜੇ ਸ਼ਬਦ ਨਾਂਵ ਦੀ ਥਾਂ ਆ ਕੇ ਕੋਈ ਪ੍ਰਸ਼ਨ ਪੁੱਛਣ, ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰਸ਼ਨਵਾਚਕ ”, ਪੜਨਾਂਵ ਕਹਿੰਦੇ ਹਨ ।
(ਸ) ਪੜਨਾਂਵ ਪੰਜ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ।
(ਹ) ਜਿਹੜੇ ਸ਼ਬਦ ਯੋਜਕ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਜੋੜਨ, ਉਹ ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ ਹੁੰਦੇ ਹਨ ।
ਉੱਤਰ :
(ਉ) ਗੱਲ ਕਰਨ ਵਾਲਾ ਪੁਰਖ ਉੱਤਮ ਪੁਰਖ ਹੁੰਦਾ ਹੈ । (✓)
(ਅ) ਜੋ ਸ਼ਬਦ ਕਿਸੇ ਵਿਅਕਤੀ, ਵਸਤੂ, ਜਗਾ ਦਾ ਨਾਂ ਦੱਸਣ, ਪੜਨਾਂਵ ਕਹਾਉਂਦੇ ਹਨ । (✗)
(ੲ) ਜਿਹੜੇ ਸ਼ਬਦ ਨਾਂਵ ਦੀ ਥਾਂ ਆ ਕੇ ਕੋਈ ਪ੍ਰਸ਼ਨ ਪੁੱਛਣ, ਉਨ੍ਹਾਂ ਨੂੰ ਪ੍ਰਸ਼ਨਵਾਚਕ ”, ਪੜਨਾਂਵ ਕਹਿੰਦੇ ਹਨ । (✓)
(ਸ) ਪੜਨਾਂਵ ਪੰਜ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ । (✗)
(ਹ) ਜਿਹੜੇ ਸ਼ਬਦ ਯੋਜਕ ਵਾਂਗ ਵਾਕਾਂ ਨੂੰ ਜੋੜਨ, ਉਹ ਪ੍ਰਸ਼ਨਵਾਚਕ ਪੜਨਾਂਵ ਹੁੰਦੇ ਹਨ । (✗)

PSEB 8th Class Punjabi Vyakaran ਵਚਨ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Vacana ਵਚਨ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਵਚਨ

ਪ੍ਰਸ਼ਨ 1.
‘ਵਚਨ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਇਹ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ? ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਦੱਸੋ ।
ਜਾਂ
ਵਚਨ ਕੀ ਹੁੰਦਾ ਹੈ ? ਪੰਜਾਬੀ ਵਿਚ ਵਚਨ ਕਿਹੜੇ-ਕਿਹੜੇ ਹਨ ? ਉਦਾਹਰਨਾਂ ਦੇ ਕੇ ਦੱਸੋ ।
ਉੱਤਰ :
ਪਰਿਭਾਸ਼ਾ :
ਇਕ ਜਾਂ ਬਹੁਤੀਆਂ ਚੀਜ਼ਾਂ, ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਜਾਂ ਕਿਰਿਆਵਾਂ ਦੇ ਭੇਦ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਵਾਲੇ ਸ਼ਬਦ ਦਾ ਰੂਪ ਉਸ ਦਾ ਵਚਨ ਹੁੰਦਾ ਹੈ ।
ਵਚਨ ਦੋ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ-ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ।
(ੳ) ਇਕ-ਵਚਨ :
ਸ਼ਬਦਾਂ ਦਾ ਜਿਹੜਾ ਰੂਪ ਕਿਸੇ ਚੀਜ਼, ਵਿਸ਼ੇਸ਼ਤਾ ਜਾਂ ਕਿਰਿਆ ਲਈ ਵਰਤਿਆ ਜਾਵੇ, ਉਸ ਨੂੰ ਇਕ-ਵਚਨ ਆਖਦੇ ਹਨ । ਪੰਜਾਬੀ ਵਿਚ ਇਸ ਦੇ ਦੋ ਰੂਪ ਹੁੰਦੇ ਹਨ, ਸਾਧਾਰਨ ਤੇ ਸੰਬੰਧਕੀ । ਇਸ ਦੇ ਦੋਵੇਂ ਰੂਪ ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਤੋਂ ਸਪੱਸ਼ਟ ਹਨ
(ਉ) ਤੇਰਾ ਮੁੰਡਾ ਕਿੱਥੇ ਹੈ ? (“ਮੁੰਡਾ” ਇਕ-ਵਚਨ ਸਾਧਾਰਨ ਰੂਪ)
(ਅ ਤੇਰੇ ਮੁੰਡੇ ਨੇ ਸਾਰਾ ਕੰਮ ਵਿਗਾੜ ਦਿੱਤਾ । (‘ਮੁੰਡੇ’ ਇਕ-ਵਚਨ ਸੰਬੰਧਕੀ ਰੂਪ”)
(ਆ) ਬਹੁ-ਵਚਨ-ਸ਼ਬਦਾਂ ਦਾ ਜਿਹੜਾ ਰੂਪ ਇਕ ਤੋਂ ਬਹੁਤੀਆਂ ਚੀਜ਼ਾਂ, ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਜਾਂ ਕਿਰਿਆਵਾਂ ਲਈ ਵਰਤਿਆ ਜਾਵੇ, ਉਸ ਨੂੰ ਬਹੁ-ਵਚਨ ਆਖਦੇ ਹਨ । ਪੰਜਾਬੀ ਵਿਚ ਇਸ ਦੇ ਵੀ ਦੋ ਰੂਪ ਹੁੰਦੇ ਹਨ, ਸਾਧਾਰਨ ਤੇ ਸੰਬੰਧਕੀ । ਇਹ ਦੋਵੇਂ ਰੂਪ ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਤੋਂ ਸਪੱਸ਼ਟ ਹਨ
(ੳ) ਉਸ ਦੇ ਦੋ ਮੁੰਡੇ ਹਨ (“ਮੁੰਡੇ’ ਬਹੁ-ਵਚਨ, ਸਾਧਾਰਨ ਰੂਪ”)
(ਅ) ਉਸ ਦੇ ਮੁੰਡਿਆਂ ਨੇ ਸਾਰਾ ਕੰਮ ਵਿਗਾੜ ਦਿੱਤਾ । (“ਮੁੰਡਿਆਂ” ਬਹੁ-ਵਚਨ, ਸੰਬੰਧਕੀ ਰੂਪ”)
ਉਪਰੋਕਤ ਵਾਕਾਂ ਤੋਂ ਸਪੱਸ਼ਟ ਹੁੰਦਾ ਹੈ ਕਿ ਪੰਜਾਬੀ ਵਿਚ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਦੇ ਦੋਦੋ ਰੂਪ ਹੁੰਦੇ ਹਨ । ਦੋਹਾਂ ਦਾ ਇਕ ਸਾਧਾਰਨ ਰੂਪ ਹੁੰਦਾ ਹੈ ਤੇ ਦੂਜਾ ਸੰਬੰਧਕੀ । ਜਦੋਂ ਇਨ੍ਹਾਂ ਨਾਲ ਸੰਬੰਧਕ ਦਾ, ਦੇ, ਦੀਆਂ, ਨੇ, ਨੂੰ, ਲਈ, ਖ਼ਾਤਰ, ਤੋਂ ਆਦਿ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਉਹ ਸੰਬੰਧਕੀ ਰੂਪ ਕਹਾਉਂਦਾ ਹੈ ।
(ਨੋਟ-ਅਧਿਆਪਕਾਂ ਤੇ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਦੇ ਇਹੋ ਤਰੀਕੇ ਹੀ ਸਿੱਖਣੇ ਤੇ ਸਿਖਾਉਣੇ ਚਾਹੀਦੇ ਹਨ ਤੇ ਪੰਜਾਬੀ ਵਿਚ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਦੇ ਦੋ-ਦੋ ਰੂਪ ਹੀ ਲਿਖਣੇ ਚਾਹੀਦੇ ਹਨ !)

PSEB 8th Class Punjabi Vyakaran ਵਚਨ

ਹੇਠਾਂ ਦੇਖੋ ਵਚਨ ਬਦਲੀ ਦੇ ਕੁੱਝ ਨਿਯਮ

1. ਜੇਕਰ ਪੁਲਿੰਗ ਸ਼ਬਦ ਦੇ ਅੰਤ ਵਿਚ ਕੰਨਾ (1) ਹੋਵੇ, ਤਾਂ ਉਸ ਸ਼ਬਦ ਦੇ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਰੂਪ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੁੰਦੇ ਹਨ
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-1
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-2

ਉੱਪਰਲੇ ਨੇਮ ਦਾ ਉਲੰਘਣ-ਕਈ ਕੰਨਾ ਅੰਤ ਵਾਲੇ ਪੁਲਿੰਗ ਨਾਂਵ ਅਜਿਹੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਇਕ-ਵਚਨ ਅਤੇ ਬਹੁ-ਵਚਨ ਸ਼ਬਦਾਂ ਦਾ ਰੂਪ ਇਕੋ ਹੀ ਹੁੰਦਾ ਹੈ; ਜਿਵੇਂ
(ਉ) ਸਤਲੁਜ ਪੰਜਾਬ ਦਾ ਇਕ ਦਰਿਆ ਹੈ । (ਇਕ-ਵਚਨ)
ਪੰਜਾਬ ਵਿਚ ਬਹੁਤ ਸਾਰੇ ਦਰਿਆ ਹਨ । (ਬਹੁ-ਵਚਨ)

(ਅ) ਉਸ ਦਾ ਇਕ ਭਰਾ ਹੈ । (ਇਕ-ਵਚਨ)
ਮੇਰੇ ਤਿੰਨ ਭਰਾ ਹਨ । (ਬਹੁ-ਵਚਨ)

2. ਜਿਨ੍ਹਾਂ ਪੁਲਿੰਗ ਸ਼ਬਦਾਂ ਦੇ ਅੰਤ ਵਿਚ ਕੰਨਾ (1) ਨਹੀਂ ਹੁੰਦਾ, ਉਹਨਾਂ ਦੇ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਰੂਪ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਬਣਦੇ ਹਨ-
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-3

PSEB 8th Class Punjabi Vyakaran ਵਚਨ

3. ਕਈ ਪੁਲਿੰਗ ਸ਼ਬਦਾਂ ਦਾ ਇਕ-ਵਚਨ ਰੂਪ ਹੀ ਨਹੀਂ, ਸਗੋਂ ਉਹ ਬਹੁ-ਵਚਨ ਰੂਪ ਵਿਚ ਹੀ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ-ਦਾਦਕੇ, ਨਾਨਕੇ, ਮਾਮੇ ।

4. ਜੇਕਰ ਇਸਤਰੀ ਲਿੰਗ ਸ਼ਬਦਾਂ ਦੇ ਅੰਤ ਵਿਚ ਬਿਹਾਰੀ (ੀ ), ਦੁਲੈਂਕੜ (ੂ) ਹੋੜਾ (ੋ) ਜਾਂ ਕਨੌੜਾ (ੌ) ਲੱਗਾ ਹੋਵੇ, ਤਾਂ ਉਹਨਾਂ ਦਾ ਇਕ-ਵਚਨ ਤੇ ਬਹੁ-ਵਚਨ ਰੂਪ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ । ਇਹਨਾਂ ਵਿਚ ਬਹੁ-ਵਚਨ ਸ਼ਬਦ ਬਣਾਉਣ ਲਈ ‘ਆਂ’ ਦਾ ਵਾਧਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ :
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-4
5. ਜਿਨ੍ਹਾਂ ਇਸਤਰੀ ਲਿੰਗ ਸ਼ਬਦਾਂ ਦੇ ਅੰਤ ਵਿਚ ਮੁਕਤਾ ਹੋਵੇ, ਉਹਨਾਂ ਦਾ ਬਹੁ-ਵਚਨ ਕੰਨਾ ਤੇ ਬਿੰਦੀ ( ) ਵਧਾਉਣ ਨਾਲ ਬਣਦਾ ਹੈ; ਜਿਵੇਂ-
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-5
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-6

PSEB 8th Class Punjabi Vyakaran ਵਚਨ

6. ਜਿਨ੍ਹਾਂ ਇਸਤਰੀ ਲਿੰਗ ਨਾਂਵਾਂ ਦੇ ਅੰਤ ਵਿਚ ਕੰਨਾ ਬਿੰਦੀ ਹੋਵੇ, ਉਹਨਾਂ ਦਾ ਬਹੁ-ਵਚਨ ‘ਬੰਦੀ ਹਟਾ ਕੇ ‘ਤੇ “ਵਾਂ’ ‘ਜਾਂ’ ‘ਈਆਂ ਵਧਾਇਆਂ ਬਣਦਾ ਹੈ; ਜਿਵੇਂ-
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-7

7. ਜਿਨ੍ਹਾਂ ਇਸਤਰੀ ਲਿੰਗ ਨਾਂਵਾਂ ਦੇ ਅੰਤ ਵਿਚ ‘ਕੰਨਾ ਹੋਵੇ, ਉਹਨਾਂ ਦਾ ਬਹੁ-ਵਚਨ ‘ਵਾਂ ਵਧਾ ਕੇ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ
PSEB 8th Class Punjabi Vyakaran ਵਚਨ-8

ਪ੍ਰਸ਼ਨ 2.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚਲੇ ਨਾਂਵ ਸ਼ਬਦਾਂ ਦੇ ਵਚਨ ਬਦਲ ਕੇ ਵਾਕ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ
(ਉ) ਲੜਕਾ ਗੀਤ ਗਾ ਰਿਹਾ ਹੈ ।
(ਅ) ਪੰਛੀ ਅਕਾਸ਼ ਵਿਚ ਉਡਾਰੀ ਮਾਰ ਰਿਹਾ ਹੈ ।
(ੲ) ਚਿੜੀ ਚੀਂ-ਚੀਂ ਕਰਦੀ ਹੈ ।
(ਸ) ਪੁਸਤਕ ਅਲਮਾਰੀ ਵਿਚ ਪਈ ਹੈ ।
(ਹ) ਕੁੜੀ ਰੌਲਾ ਪਾ ਰਹੀ ਹੈ ।
(ਕ) ਸ਼ੇਰਨੀ ਜੰਗਲ ਵਿਚ ਫਿਰਦੀ ਹੈ ।
(ਖ) ਅੰਬ ਮਿੱਠਾ ਤੇ ਸੁਆਦੀ ਹੈ ।
(ਗ) ਕਿਸਾਨ ਹਲ ਚਲਾ ਰਿਹਾ ਹੈ ।
(ਘ) ਮੇਰੇ ਮਿੱਤਰ ਕੋਲ ਬੱਕਰੀ ਹੈ ।
(ਛ) ਕੁੜੀ ਟੈਲੀਫੋਨ ‘ਤੇ ਗੱਲ ਕਰ ਰਹੀ ਹੈ ।
ਉੱਤਰ :
(ਉ) ਲੜਕੇ ਗੀਤ ਗਾ ਰਹੇ ਹਨ ।
(ਅ) ਪੰਛੀ ਅਕਾਸ਼ਾਂ ਵਿਚ ਉਡਾਰੀਆਂ ਮਾਰ ਰਹੇ ਹਨ ।
(ੲ) ਚਿੜੀਆਂ ਚੀਂ-ਚੀਂ ਕਰਦੀਆਂ ਹਨ ।
(ਸ) ਪੁਸਤਕਾਂ ਅਲਮਾਰੀਆਂ ਵਿਚ ਪਈਆਂ ਹਨ ।
(ਹ) ਕੁੜੀਆਂ ਰੌਲਾ ਪਾ ਰਹੀਆਂ ਹਨ ।
(ਕ) ਸ਼ੇਰਨੀਆਂ ਜੰਗਲਾਂ ਵਿਚ ਫਿਰਦੀਆਂ ਹਨ ।
(ਖ) ਅੰਬ ਮਿੱਠੇ ਤੇ ਸੁਆਦੀ ਹਨ ।
(ਗ) ਕਿਸਾਨ ਹਲ ਚਲਾ ਰਹੇ ਹਨ ।
(ਘ) ਸਾਡੇ ਮਿੱਤਰਾਂ ਕੋਲ ਬੱਕਰੀਆਂ ਹਨ ।
(ਛ) ਕੁੜੀਆਂ ਟੈਲੀਫੋਨਾਂ ‘ਤੇ ਗੱਲਾਂ ਕਰ ਰਹੀਆਂ ਹਨ ।

PSEB 8th Class Punjabi Vyakaran ਵਚਨ

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਨੂੰ ਵਚਨ ਬਦਲ ਕੇ ਲਿਖੋ
(ਉ) ਨਿੱਕਾ ਮੁੰਡਾ ਪਲੇਟ ਵਿਚੋਂ ਚਮਚੇ ਨਾਲ ਆਈਸਕਰੀਮ ਖਾ ਰਿਹਾ ਹੈ ।
(ਅ) ਲਾਲ ਘੋੜਾ ਅਤੇ ਚਿੱਟਾ ਕੁੱਤਾ ਦੌੜ ਲਾ ਰਹੇ ਹਨ ।
(ਇ) ਠੰਢੀ ਹਵਾ ਚਲ ਰਹੀ ਹੈ ।
(ਸ) ਮੈਂ ਤੇਰੀ ਮੱਦਦ ਨਹੀਂ ਕਰ ਸਕਦਾ ।
(ਹ) ਬੱਚਾ ਗੇਂਦ ਨਾਲ ਖੇਡ ਰਿਹਾ ਹੈ ।
ਉੱਤਰ :
(ਉ) ਨਿੱਕੇ ਮੁੰਡੇ ਪਲੇਟਾਂ ਵਿਚੋਂ ਚਮਚਿਆਂ ਨਾਲ ਆਈਸਕਰੀਮਾਂ ਖਾ ਰਹੇ ਹਨ ।
(ਅ) ਲਾਲ ਘੋੜੇ ਅਤੇ ਚਿੱਟੇ ਕੁੱਤੇ ਦੌੜਾਂ ਲਾ ਰਹੇ ਹਨ ।
(ੲ) ਠੰਢੀਆਂ ਹਵਾਵਾਂ ਚਲ ਰਹੀਆਂ ਹਨ ।
(ਸ) ਅਸੀਂ ਤੁਹਾਡੀਆਂ ਮੱਦਦਾਂ ਨਹੀਂ ਕਰ ਸਕਦੇ ।
(ਹ) ਬੱਚੇ ਗੇਂਦਾਂ ਨਾਲ ਖੇਡ ਰਹੇ ਹਨ ।

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਨੂੰ ਵਚਨ ਬਦਲ ਕੇ ਦੁਬਾਰਾ ਲਿਖੋ
(ਉ) ਮੈਂ ਉਸ ਦੀ ਕਿਤਾਬ ਲੈ ਕੇ ਪੜੀ ।
(ਅ) ਉਹਨਾਂ ਨੇ ਮੈਨੂੰ ਧੋਖਾ ਦਿੱਤਾ ।
(ੲ) ਮੱਝਾਂ, ਗਾਈਆਂ ਤੇ ਬੱਕਰੀਆਂ ਖੇਤਾਂ ਵਿਚ ਘਾਹ ਚੁਗ ਰਹੀਆਂ ਹਨ ।
(ਸ) ਉਸ ਦੇ ਦੋ ਮੁੰਡੇ ਹਨ ।
ਉੱਤਰ :
(ਉ) ਅਸੀਂ ਉਹਨਾਂ ਦੀਆਂ ਕਿਤਾਬਾਂ ਲੈ ਕੇ ਪੜ੍ਹੀਆਂ ।
(ਅ) ਉਸ ਨੇ ਸਾਨੂੰ ਧੋਖੇ ਦਿੱਤੇ ।
(ੲ) ਮੱਝ, ਗਾਂ ਤੇ ਬੱਕਰੀ ਖੇਤ ਵਿਚ ਘਾਹ ਚੁਗ ਰਹੀਆਂ ਹਨ ।
(ਸ) ਉਨ੍ਹਾਂ ਦਾ ਇਕ ਮੁੰਡਾ ਹੈ ।

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Ling ਲਿੰਗ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਲਿੰਗ

ਪ੍ਰਸ਼ਨ 1.
ਲਿੰਗ ਕੀ ਹੈ ? ਇਹ ਕਿੰਨੀ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ?
ਜਾਂ
ਸ਼ਬਦ ਦੇ ਲਿੰਗ ਤੋਂ ਕੀ ਭਾਵ ਹੈ ? ਇਹ ਕਿੰਨੀ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ?
ਉੱਤਰ :
ਪਰਿਭਾਸ਼ਾ :
ਸ਼ਬਦ ਦਾ ਪੁਰਖਵਾਚਕ ਤੇ ਇਸਤਰੀਵਾਚਕ ਭਾਵ ਉਸ ਦਾ ਲਿੰਗ ਹੁੰਦਾ ਹੈ, ਜੋ ਕਿ ਜਾਨਦਾਰ ਚੀਜ਼ਾਂ ਵਿਚ ਨਰ-ਮਦੀਨ, ਨਿਰਜੀਵ ਜਾਂ ਸਬੂਲ ਚੀਜ਼ਾਂ ਦੇ ਵੱਡੇ-ਛੋਟੇ ਆਕਾਰ ਜਾਂ ਸ਼ਕਲ ਨੂੰ ਨਿਸ਼ਚਿਤ ਕਰਨ ਤੋਂ ਬਿਨਾਂ ਆਪ-ਮੁਹਾਰੇ ਰੂਪ ਵਿਚ ਵੀ ਵਿਚਰਦਾ ਹੈ ਤੇ ਵਾਕ ਦੇ ਹੋਰਨਾਂ ਸ਼ਬਦਾਂ ਨੂੰ ਵੀ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ ।
ਲਿੰਗ ਦੋ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ-ਪੁਲਿੰਗ ਅਤੇ ਇਸਤਰੀ ਲਿੰਗ ।
(ਉ) ਪੁਲਿੰਗ :
ਪੁਰਖਵਾਚਕ ਭਾਵ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਵਾਲਾ ਸ਼ਬਦ ਪੁਲਿੰਗ ਹੁੰਦਾ ਹੈ, ਜੋ ਜਾਨਦਾਰ ਚੀਜ਼ਾਂ ਵਿਚ ਨਰ ਭਾਵ ਨੂੰ ਅਤੇ ਨਿਰਜੀਵ ਚੀਜ਼ਾਂ ਦੇ ਵੱਡੇ ਆਕਾਰ ਜਾਂ ਸ਼ਕਲ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਤੋਂ ਬਿਨਾਂ ਆਪ-ਮੁਹਾਰੇ ਰੂਪ ਵਿਚ ਵੀ ਵਿਚਰਦਾ ਹੈ ਤੇ ਵਾਕ ਦੇ ਹੋਰਨਾਂ ਸ਼ਬਦਾਂ ਨੂੰ ਵੀ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ; ਜਿਵੇਂ-ਮੁੰਡਾ, ਬਲਦ, ਪਹਾੜ ਆਦਿ ।

(ਅ) ਇਸਤਰੀ ਲਿੰਗ :
ਇਸਤਰੀਵਾਚਕ ਭਾਵ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਵਾਲਾ ਸ਼ਬਦ ਇਸਤਰੀ ਲਿੰਗ ਹੁੰਦਾ ਹੈ, ਜੋ ਜਾਨਦਾਰ ਚੀਜ਼ਾਂ ਵਿਚ ਮਦੀਨ ਭਾਵ ਨੂੰ ਅਤੇ ਨਿਰਜੀਵ ਤੇ ਸਥਲ ਚੀਜ਼ਾਂ ਦੇ ਛੋਟੇ ਆਕਾਰ ਜਾਂ ਸ਼ਕਲ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਤੋਂ ਬਿਨਾਂ ਆਪ-ਮੁਹਾਰੇ ਵਿਚ ਵੀ ਵਿਚਰਦਾ ਹੈ ਤੇ ਵਾਕ ਦੇ ਹੋਰਨਾਂ ਸ਼ਬਦਾਂ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ; ਜਿਵੇਂ-ਕੁੜੀ, ਗਾਂ, ਪਹਾੜੀ ਆਦਿ ।

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

ਪ੍ਰਸ਼ਨ 2.
ਪੁਲਿੰਗ ਨਾਂਵਾਂ ਤੋਂ ਇਸਤਰੀ ਲਿੰਗ ਬਣਾਉਣ ਦੇ ਨੇਮ ਦੱਸੋ । ਉਦਾਹਰਨਾਂ ਵੀ ਦਿਓ ।
ਉੱਤਰ :
ਲਿੰਗ ਬਦਲੀ ਦੇ ਬਹੁਤ ਸਾਰੇ ਨਿਯਮ ਹਨ । ਹੇਠਾਂ ਇਹਨਾਂ ਨਿਯਮਾਂ ਨੂੰ ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਪੇਸ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ
1. ਜੇਕਰ ਪੁਲਿੰਗ ਨਾਂਵ ਦੇ ਅਖੀਰ ਵਿਚ ਮੁਕਤਾ ਅੱਖਰ ਹੋਵੇ, ਤਾਂ ਉਹਨਾਂ ਦੇ ਅੱਗੇ ਬਿਹਾਰੀ (ੀ), ‘ਨੀ’, ‘ਣੀ, ਕੰਨਾ, “ਕੰਨਾ +ਣੀ’, ‘ਕੀ ਜਾਂ ‘ੜੀ’ ਨੂੰ ਵਧਾ ਕੇ ਇਸਤਰੀ ਲਿੰਗ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-

(ਉ) ਬਿਹਾਰੀ ਵਧਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਕਬੂਤਰ – ਕਬੂਤਰੀ
ਦੇਵਤਾ – ਦੇਵੀ
ਬਾਂਦਰ – ਬਾਂਦਰੀ
ਹਰਨ – ਹਰਨੀ
ਦਾਸ – ਦਾਸੀ
ਪੁੱਤਰ – ਪੁੱਤਰੀ
ਟੋਪ – ਟੋਪੀ
ਗਿੱਦੜੇ – ਗਿੱਦੜੀ
ਮੁੱਛ – ਮੱਛੀ
ਬ੍ਰਾਹਮਣ – ਬਾਹਮਣੀ
ਪਹਾੜ – ਪਹਾੜੀ
ਘੁਮਿਆਰ – ਘੁਮਿਆਰੀ
ਮਿਆਰ – ਮਿਆਰੀ
ਕੁੱਕੜ – ਕੁੱਕੜੀ
ਗੁੱਜਰ – ਗੁੱਜਰੀ
ਲੂੰਬੜ – ਲੂੰਬੜੀ
ਗਲਾਸ – ਗਲਾਸੀ
ਹਿਰਨ – ਹਿਰਨੀ
ਬੱਦਲ – ਬੱਦਲੀ
ਜੱਟ – ਜੱਟੀ
ਗੁਜਰ – ਗੁਜਰੀ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

(ਅ) ਨੂੰ ਵਧਾ ਕੇ

ਫ਼ਕੀਰ – ਫ਼ਕੀਰਨੀ
ਜਥੇਦਾਰ – ਜਥੇਦਾਰ
ਸੂਬੇਦਾਰ – ਸੂਬੇਦਾਰਨੀ
ਠੇਕੇਦਾਰ – ਠੇਕੇਦਾਰਨੀ
ਜਮਾਂਦਾਰ – ਜਮਾਂਦਾਰਨੀ
ਨੰਬਰਦਾਰ – ਨੰਬਰਦਾਰਨੀ
ਬਾਜ਼ੀਗਰ – ਬਾਜ਼ੀਗਰਨੀ
ਸ਼ੇਰ – ਸ਼ੇਰਨੀ
ਮੋਰ – ਮੋਰਨੀ
ਸਰਦਾਰ – ਸਰਦਾਰਨੀ
ਸ਼ਾਹੂਕਾਰ – ਸ਼ਾਹੂਕਾਰਨੀ
ਜਾਦੂਗਰ – ਜਾਦੂਗਰਨੀ
ਸੇਵਾਦਾਰ – ਸੇਵਾਦਾਰਨੀ
ਪੁੱਤਰ – ਪੁੱਤਰੀ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

(ੲ) ‘ਈਂ ਵਧਾ ਕੇ

ਊਠ – ਊਠਣੀ
ਉਸਤਾਦ – ਉਸਤਾਦਣੀ
‘ਮਹੰਤ – ਮਹੰਤਣੀ
ਸੱਪ – ਸੱਪਣੀ
ਸਿੱਖ’ – ਸਿੱਖਣੀ
ਭਗਤ – ਭਗਤਣੀ
ਸ਼ਾਹ – ਸ਼ਾਹਣੀ
ਸਰਾਫ਼ – ਸਰਾਫ਼ਣੀ
ਸੁੰਮ – ਮੂੰਮਣੀ
ਸਾਧ – ਸਾਧਣੀ
ਭੰਡ – ਭੰਡਣੀ
ਭਾਲ – ਭੀਲਣੀ
ਰਾਗ – ਰਾਗਣੀ
ਰਿੱਛ – ਗਿੱਛਣੀ
ਕੁੜਮ – ਕੁੜਮਣੀ
ਸੰਤ – ਸੰਤਣੀ
ਨਾਗ – ਨਾਗਣੀ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

(ਸ) ਕੰਨਾ ‘ ਵਧਾ ਕੇ

ਨਾਇਕ – ਨਾਇਕਾ
ਸੇਵਕ – ਸੇਵਕਾ
ਲੇਖਕ – ਲੇਖਕਾ
ਪ੍ਰਬੰਧਕ – ਪ੍ਰਬੰਧਕਾ
ਪ੍ਰਚਾਰਕ – ਪ੍ਰਚਾਰਕਾ
ਪ੍ਰੀਤਮ – ਪੀਤਮਾ
ਅਧਿਆਪਕ – ਅਧਿਆਪਕਾ
ਪਾਠਕ – ਪਾਠਕਾ
ਉਪਦੇਸ਼ਕ – ਉਪਦੇਸ਼ਕਾ

(ਹ) ‘ਕੰਨਾ + ਈਂ ਵਧਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਪੰਡਤ – ਪੰਡਤਾਣੀ
ਸੇਠ – ਸੇਠਾਣੀ
ਨੌਕਰ – ਨੌਕਰਾਣੀ
ਦਿਓਰ – ਦਿਓਰਾਣੀ
ਜੇਠ – ਜੇਠਾਣੀ
ਪ੍ਰੋਹਤ – ਪ੍ਰੋਹਤਾਣੀ
ਮਾਸਟਰ – ਮਾਸਟਰਾਣੀ
ਪ੍ਰੋਫ਼ੈਸਰ – ਪ੍ਰੋਫ਼ੈਸਰਾਣੀ
ਮੁਗਲ – ਮੁਗ਼ਲਾਣੀ

(ਕ) ‘ਸੀਂ ਜਾਂ ‘ੜੀ ਵਧਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਢੋਲ – ਢੋਲਕੀ
ਚੰਮ – ਚੰਮੜੀ
ਖੰਭ – ਡੋਲ
ਡੋਲਕੀ –
ਬਾਲ – ਬਾਲੜੀ
ਸੂਤ – ਸੂਤੜੀ
ਸੰਦੂਕੜੀ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

2. ਜੇਕਰ ਪੁਲਿੰਗ ਸ਼ਬਦਾਂ ਦੇ ਅਖ਼ੀਰ ਵਿਚ ਕੰਨਾ (ਾ) ਲੱਗਾ ਹੋਵੇ, ਤਾਂ ‘ਕੰਨੇ ਦੀ ਜਗਾ ਬਿਹਾਰੀ (ੀ), ਜਾਂ “ਨ’ ਲਾ ਕੇ ਜਾਂ ਕੰਨਾ ਹਟਾ ਕੇ ਇਸਤਰੀ ਲਿੰਗ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ

(ਉ) ਕੰਨੇ ਦੀ ਥਾਂ ‘ਬਿਹਾਰੀ (ੀ)’ ਲਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਦਾਦਾ – ਦਾਦੀ
ਖੋਤਾ – ਖੋਤੀ
ਪਠੋਰਾ – ਪਠੋਰੀ
ਆਰਾ – ਆਰੀ
ਮਹਿਰਾ – ਮਹਿਰੀ
ਕੁੜਤਾ – ਕੁੜਤੀ
ਵੱਢਾ – ਵੱਛੀ
ਬਾਟਾ – ਬਾਟੀ
ਕਿਰਲਾ – ਕਿਰਲੀ
ਕੁੱਤਾ – ਕੁੱਤੀ
ਮਾਮਾ – ਮਾਮੀ
ਝੋਟਾ – ਝੋਟੀ
ਬੋਤਾ – ਬੋਤੀ
ਚਾਚਾ – ਚਾਚੀ
ਰਾਖਾ – ਰਾਖੀ
ਘੋੜਾ – ਘੋੜੀ
ਭੁੱਖਾ – ਭੁੱਖੀ
ਚਰਖਾ – ਚਰਖੀ
ਬੱਚਾ – ਬੱਚੀ
ਨਾਨਾ – ਨਾਨੀ
ਭਤੀਜਾ – ਭਤੀਜੀ
ਭਾਣਜਾ – ਭਾਣਜੀ/ਭਣੇਵੀਂ
ਤਾਇਆ – ਤਾਈ
ਮੁਰਗਾ – ਮੁਰਗੀ
ਬਿੱਲ – ਬਿੱਲੀ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

(ਅ) ਕੰਨੇ ਦੀ ਥਾਂ ‘ਨ ਲਾ ਕੇ

ਪੁਲਿੰਗ ਇ: ਲਿੰਗ
ਸ਼ਿਕਾਰੀ – ਸ਼ਿਕਾਰਨ
ਸ਼ਹਿਰੀ – ਸ਼ਹਿਰਨ
ਮਛੇਰਾ – ਮਛੇਰਨ
ਲੁਟੇਰਾ – ਲੁਟੇਰਨ
ਵਣਜਾਰਾ – ਵਣਜਾਰਨ
ਭਠਿਆਰਾ – ਭਠਿਆਰਨ
ਸਪੇਰਾ – ਸਪੇਨ
ਕਸੇਰਾ – ਕਸੇਰਨ
ਹਤਿਆਰਾ – ਹਤਿਆਰਨ
ਹਾਣੀ – ਹਾਣਨ
ਖਿਡਾਰੀ – ਖਿਡਾਰਨ
ਲਿਖਾਰੀ – ਲਿਖਾਰਨ

(ੲ) ‘ਕੰਨਾ (ਾ)’ ਹਟਾ ਕੇ
ਗੱਡਾ – ਗੱਡ
‘ਸੰਢਾ – ਸੰਢ
ਠੰਡਾ – ਰੰਡ

3. ਜੇਕਰ ਪੁਲਿੰਗ ਨਾਂਵ ਦੇ ਅਖ਼ੀਰ ਵਿਚ ਬਿਹਾਰੀ + ਆ ਹੋਵੇ, ਤਾਂ ਇਹਨਾਂ ਦੋਹਾਂ ਨੂੰ ਹਟਾ ਕੇ “ਨ ਜਾਂ ‘ਣ ਲਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ , ਜਿਵੇਂ-

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਪੋਠੋਹਾਰੀਆ – ਪੋਠੋਹਾਰਨ
ਪੂਰਬੀਆ – ਪੂਰਬਣ
ਹਟਵਾਣੀਆ – ਹਟਵਾਣਨ
ਦੁਆਬੀਆ – ਦੁਆਬਣ
ਪਹਾੜੀਆ – ਪਹਾੜਨੇ
ਪਸ਼ੌਰੀਆ – ਪਸ਼ੌਰਨ
ਕਸ਼ਮੀਰੀਆ – ਕਸ਼ਮੀਰ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

4. ਜੇਕਰ ਪੁਲਿੰਗ ਨਾਂਵ ਦੇ ਅੰਤ ਵਿਚ ਬਿਹਾਰੀ ਹੋਵੇ, ਤਾਂ ਬਿਹਾਰੀ ਹਟਾ ਕੇ ‘ਣ’, ‘ਇਣ’ ਜਾਂ “ਆਣੀ ਲਾ ਕੇ ਇਸਤਰੀ ਲਿੰਗ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ

(ਉ) ਬਿਹਾਰੀ ਦੀ ਥਾਂ ‘ਣ ਲਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਮਾਲ – ਮਾਲਣ
ਧੋਬੀ – ਧੋਬਣ
ਗੁਆਂਢੀ – ਗੁਆਂਢਣ
ਪੰਜਾਬੀ – ਪੰਜਾਬਣ
ਸਾਥੀ – ਸਾਥਣ
ਤੇਲੀ – ਤੇਲਣ
ਮੋਚੀ – ਮੋਚਣ
ਗਿਆਨੀ – ਗਿਆਨਣ
ਧੋਬੀ – ਧੋਬਣ

(ਅ) ਬਿਹਾਰੀ ‘ਈਂ ਦੀ ਥਾਂ “ਇਣ ਲਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਨਾਈ – ਨਾਇਣ
ਅਰਾਈਂ – ਅਰਾਇਣ
ਈਸਾਈ – ਈਸਾਇਣ
ਕਸਾਈ – ਕਸਾਇਣ
ਸੁਦਾਈ – ਸੁਦਾਇਣ
ਹਲਵਾਈ – ਹਲਵਾਇਣ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

(ੲ) ਬਿਹਾਰੀ ਦੀ ਥਾਂ ਆਣੀ ਲਾ ਕੇ

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਖੱਤਰੀ – ਖੱਤਰਾਣੀ
ਚੌਧਰੀ – ਚੌਧਰਾਣੀ
ਸਾਂਸੀ – ਸਾਂਸੀਆਣੀ
ਪਾਦਰੀ – ਪਾਦਰਆਣੀ
ਭਾਈ – ਭਾਈਆਣੀ
ਮਾਂਦਰੀ – ਮਾਂਦਰਆਣੀ

5. ਜੇਕਰ ਪੁਲਿੰਗ ਨਾਂਵ ਦੇ ਅਖੀਰ ਵਿਚ ‘ਦੁਲੈਂਕੜ ਹੋਵੇ ਤਾਂ ‘ਣੀ, ਜਾਂ ‘ਆਣੀ ਦਾ ਵਾਧਾ ਕਰ ਕੇ ਇਸਤਰੀ ਲਿੰਗ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂ-

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਪੇਂਡੂ – ਪੇਂਡੂਆਣੀ
ਹਿੰਦੂ – ਹਿੰਦੂਆਣੀ
ਸਾਊ – ਸਾਊਆਣੀ

6. ਕਈ ਵਾਰੀ ਬਿਨਾਂ ਕਿਸੇ ਨੇਮ ਤੋਂ ਵੀ ਲਿੰਗ ਬਦਲੀ ਹੋ ਜਾਂਦੀ ਹੈ | ਅਜਿਹੀ ਹਾਲਤ ਵਿਚ ਪੁਲਿੰਗ ਅਤੇ ਇਸਤਰੀ ਲਿੰਗ ਸ਼ਬਦ ਇਕ ਦੂਜੇ ਤੋਂ ਬਿਲਕੁਲ ਭਿੰਨ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ-

ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਪੁੱਤਰ – ਧੀ
ਰਾਜਾ – ਰਾਣੀ
ਨਵਾਬ – ਬੇਗ਼ਮ
ਵਰ -ਕੰਨਿਆ
ਭੂਤ – ਚੁੜੇਲ
ਖ਼ਸਮ – ਮੱਝ
ਗੱਭਰੂ – ਮੁਟਿਆਰ
ਪਿਓ – ਮਾਂ
ਲਾੜਾ – ਵਹੁਟੀ
ਨਰ – ਮਾਦਾ
ਪਿਤਾ – ਮਾਤਾ
ਦਵਿਆਹੁਰਾ – ਦਢੇਸ
ਮਿੱਤਰ – ਸਹੇਲੀ
ਪੁਰਖ – ਇਸਤਰੀ
ਦਿਓ – ਪਰੀ
ਫੁੱਫਿਆਹੁਰਾ – ਫੁਫੇਸ
ਮਰਦ – ਤੀਵੀਂ
ਮਾਨ – ਸ੍ਰੀਮਤੀ
ਭਰਾ – ਭੈਣ
ਸਹੁਰਾ – ਸੱਸ
ਮੁੰਡਾ – ਕੁੜੀ
ਸਾਹਿਬ – ਮੇਮ

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

7. ਕਈ ਪੁਲਿੰਗਾਂ ਦੇ ਦੋ-ਦੋ ਇਸਤਰੀ ਲਿੰਗ ਹੁੰਦੇ ਹਨ ਅਤੇ ਕਈ ਇਸਤਰੀ ਲਿੰਗਾਂ ਦੇ ਦੋ-ਦੋ ਪੁਲਿੰਗ ਹੁੰਦੇ ਹਨ, ਜਿਵੇਂ-
ਪੁਲਿੰਗ – ਇ: ਲਿੰਗ
ਭਰਾ – ਭੈਣ, ਭਰਜਾਈ
ਸਾਲਾ – ਸਾਲੀ, ਸਾਲੇਹਾਰ
ਪੁੱਤ – ਧੀ, ਨੂੰਹ
ਸਾਲਾ, ਸਾਂਢੂ – ਸਾਲੀ
ਜਵਾਈ, ਪੁੱਤਰ – ਧੀ
ਭਰਾ, ਭਣਵੱਈਆ – ਭੈਣ

8. ਕਈ ਪੁਲਿੰਗ ਇਸਤਰੀ ਲਿੰਗ ਤੋਂ ਬਣਦੇ ਹਨ, ਜਿਵੇਂ-
ਇ: ਲਿੰਗ – ਪੁਲਿੰਗ
ਭੈਣ – ਭਟੱਵਈਆ
ਭੂਆ, ਫੁੱਫੀ – ਫੁੱਫੜ
ਮਾਸੀ – ਮਾਸੜ
ਨਿਨਾਣ – ਨਿਨਾਣਵਈਆ
ਨਣਦ – ਨਣਦੋਈਆ
ਰੇਤ – ਰੇਤਾ

9. ਕਈ ਵਾਰ ਪੁਲਿੰਗ ਸ਼ਬਦ ਦੁਆਰਾ ਕਿਸੇ ਚੀਜ਼ ਦੇ ਵੱਡੇ ਅਕਾਰ ਨੂੰ ਪ੍ਰਗਟ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਤੇ ਇਸਤਰੀ ਲਿੰਗ ਦੁਆਰਾ ਛੋਟੇ ਅਕਾਰ ਨੂੰ ਜਿਵੇਂ-

ਇ: ਲਿੰਗ ਪੁਲਿੰਗ
ਮੱਖੀ – ਮੁੱਖ
ਤੱਕੜੀ – ਤੱਕੜ
ਪਗੜੀ – ਪੱਗੜ
ਛਤਰੀ – ਛਤਰ
ਟੋਕਰੀ – ਟੋਕਰਾ
ਆਰੀ – ਆਰਾ
ਬਾਟਾ – ਬਾਟੀ
ਰੰਬਾ – ਰੰਬੀ
ਪੱਖਾ – ਪੱਖੀ
ਸੰਦੂਕ – ਸੰਦੂਕੜੀ
ਘੜਾ – ਘੜੀ
ਡੱਬਾ – ਡੱਬੀ

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚੋਂ ਮੋਟੇ ਸ਼ਬਦਾਂ ਦੇ ਲਿੰਗ ਬਦਲ ਕੇ ਦੁਬਾਰਾ ਲਿਖੋ
(ੳ) ਉਹ ਇਕ ਕਮਜ਼ੋਰ ਆਦਮੀ ਹੈ ।
(ਅ) ਵੀਰ ਜੀ ਘਰ ਪਹੁੰਚ ਗਏ ਹਨ ।
(ੲ) ਵਿਦਿਆਰਥੀ ਪੜ੍ਹ ਰਿਹਾ ਹੈ ।
(ਸ) ਹਾਥੀ ਨਦੀ ਵਿਚ ਪਾਣੀ ਪੀ ਰਿਹਾ ਹੈ ।
ਉੱਤਰ :
(ੳ) ਉਹ ਇਕ ਕਮਜ਼ੋਰ ਤੀਵੀਂ ਹੈ ।
(ਅ) ਭੈਣ ਜੀ ਘਰ ਪਹੁੰਚ ਗਏ ਹਨ ।
(ੲ) ਵਿਦਿਆਰਥਣ ਪੜ੍ਹ ਰਹੀ ਹੈ ।
(ਸ) ਹਥਨੀ ਨਦੀ ਵਿਚ ਪਾਣੀ ਪੀ ਰਹੀ ਹੈ ।

PSEB 8th Class Punjabi Vyakaran ਲਿੰਗ

ਪਸ਼ਨ 4.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਦੇ ਲਿੰਗ ਬਦਲੋ
(ਉ) ਸੱਪ, ਬੱਕਰਾ, ਹਾਥੀ, ਚਾਚਾ, ਵੱਛਾ, ਨਾਨੀ ।
(ਅ) ਮਾਮੀ, ਧੋਬਣ, ਸੋਹਣੀ, ਤੇਲਣਾ |
(ੲ) ਪੁੱਤਰੀ, ਮੋਰਨੀ, ਨੌਕਰਾਣੀ, ਪੰਜਾਬੀ, ਰਾਗ ।
(ਸ) ਸੰਤ, ਲਾੜਾ, ਮੁਗ਼ਲ, ਸੰਦੂਕ, ਖੋਤਾ, ਭੂਤ |
ਉੱਤਰ :
(ਉ) ਸੱਪਣੀ, ਬੱਕਰੀ, ਹਾਥਣ, ਚਾਚੀ, ਵੱਛੀ, ਨਾਨਾ ।
(ਅ) ਮਾਮਾ, ਧੋਬੀ, ਸੋਹਣਾ, ਤੇਲੀ ।
(ੲ) ਪੁੱਤਰ, ਮੋਰ, ਨੌਕਰ, ਪੰਜਾਬਣ, ਰਾਗਣੀ ।
(ਸ) ਸੰਤਣੀ, ਲਾੜੀ, ਮੁਗਲਾਣੀ, ਸੰਦੂਕੜੀ, ਖੋਤੀ, ਭੁਤਨੀ ॥

ਪ੍ਰਸ਼ਨ 5.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਨੂੰ ਲਿੰਗ ਬਦਲ ਕੇ ਦੁਬਾਰਾ ਲਿਖੋ
(ਉ) ਵਕੀਲ, ਡਾਕਟਰ ਤੇ ਮਾਸਟਰ ਸਲਾਹਾਂ ਕਰ ਰਹੇ ਹਨ ।
(ਅ) ਪਿੰਡਾਂ ਵਿਚ ਜੱਟ, ਝੀਉਰ, ਬਾਹਮਣ, ਨਾਈ, ਸਿੱਖ ਤੇ ਹਿੰਦੂ ਰਹਿੰਦੇ ਹਨ ।
(ੲ) ਬਾਗ਼ ਵਿਚ ਮੋਰ, ਚਿੜੀਆਂ, ਕਬੂਤਰ ਤੇ ਸੱਪ ਰਹਿੰਦੇ ਹਨ ।
(ਸ) ਮੇਰਾ ਦਿਓਰ, ਜੇਠ, ਫੁੱਫਿਆਹੁਰਾ, ਦਵਿਆਹੁਰਾ ਤੇ ਮਮਿਅਹੁਰਾ ਮਿਲਣ ਲਈ ਆਏ ।
(ਹ) ਮੇਰੇ ਪਤੀ ਨੇ ਗਵਾਂਢੀ ਦੇ ਸਿਰ ਵਿਚ ਸੋਟਾ ਮਾਰਿਆ ।
ਉੱਤਰ :
(ਉ) ਵਕੀਲਣੀਆਂ, ਡਾਕਟਰਾਣੀਆਂ ਤੇ ਮਾਸਟਰਾਣੀਆਂ ਸਲਾਹਾਂ ਕਰ ਰਹੀਆਂ ਹਨ ।
(ਅ) ਪਿੰਡਾਂ ਵਿਚ ਜੱਟੀਆਂ, ਝੀਉਰੀਆਂ, ਬਾਹਮਣੀਆਂ, ਨਾਇਣਾਂ, ਸਿੱਖਣੀਆਂ ਤੇ ਹਿੰਦੁਆਣੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ ।
(ੲ) ਬਾਗ਼ ਵਿਚ ਮੋਰਨੀਆਂ, ਚਿੜੇ, ਕਬੂਤਰੀਆਂ ਤੇ ਸੱਪਣੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ ।
(ਸ) ਮੇਰੀ ਦਰਾਣੀ, ਜਿਠਾਣੀ, ਫੁੱਫੀ, ਦੇਸ ਤੇ ਮਐਸ ਮਿਲਣ ਲਈ ਆਈਆਂ ।
(ਹ) ਮੇਰੀ ਪਤਨੀ ਨੇ ਗਵਾਂਢਣ ਦੇ ਸਿਰ ਵਿਚ ਸੋਟੀ ਮਾਰੀ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Sabadam di bhida-nanva ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

ਪ੍ਰਸ਼ਨ 1.
ਨਾਂਵ ਦੇ ਲੱਛਣ ਤੇ ਇਸ ਦੇ ਭੇਦ (ਕਿਸਮਾਂ) ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਦੱਸੋ ।
ਜਾ
ਨਾਂਵ ਕੀ ਹੁੰਦਾ ਹੈ ? ਇਹ ਕਿੰਨੀ ਪ੍ਰਕਾਰ ਦਾ ਹੁੰਦਾ ਹੈ ? ਉਦਾਹਰਨਾਂ ਦੇ ਕੇ ਦੱਸੋ ।
ਉੱਤਰ :
ਨਾਂਵ ਉਨ੍ਹਾਂ ਸ਼ਬਦਾਂ ਨੂੰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ ; ਜਿਨ੍ਹਾਂ ਰਾਹੀਂ ਅਸੀਂ ਚੀਜ਼ਾਂ, ਮਨੁੱਖਾਂ ਅਤੇ ਥਾਂਵਾਂ ਦੇ ਨਾਂ ਲੈਂਦੇ ਹਾਂ ; ਜਿਵੇਂ-ਵਿਦਿਆਰਥੀ, ਸੁਰਜੀਤ ਸਿੰਘ, ਜਮਾਤ, ਸ਼ਹਿਰ, ਅੰਮ੍ਰਿਤਸਰ, ਸੋਨਾ, ਮਿੱਟੀ, ਮਿਠਾਸ, ਕੁੜੱਤਣ ਆਦਿ ।
ਨਾਂਵ ਪੰਜ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ-
1. ਆਮ ਨਾਂਵ ਜਾਂ ਜਾਤੀਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਕਿਸੇ ਸਮੁੱਚੀ ਸ਼੍ਰੇਣੀ ਜਾਂ ਜਿਣਸ ਲਈ ਵਰਤੇ ਜਾਣ, ਉਨ੍ਹਾਂ ਨੂੰ ਆਮ ਨਾਂਵ ਜਾਂ ਜਾਤੀਵਾਚਕ ਨਾਂਵ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ-ਕਪਤਾਨ, ਪੁਸਤਕ, ਮਨੁੱਖ, ਨਗਰ, ਮੁੰਡਾ, ਵਿਦਿਆਰਥੀ, ਆਦਮੀ, ਪਿੰਡ, ਸ਼ਹਿਰ, ਦਰਿਆ, ਘੋੜਾ, ਆਦਿ ।

2. ਖ਼ਾਸ ਨਾਂਵ ਜਾਂ ਨਿੱਜਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਕਿਸੇ ਖ਼ਾਸ ਪੁਰਖ, ਇਸਤਰੀ ਜਾਂ ਥਾਂ ਦਾ ਨਾਂ ਪ੍ਰਗਟ ਕਰਨ, ਉਨ੍ਹਾਂ ਨੂੰ ‘ਖ਼ਾਸ ਨਾਂਵ ਜਾਂ “ਨਿੱਜਵਾਚਕ ਨਾਂਵ” ਕਿਹਾ ਜਾਂਦਾ ਹੈ; ਜਿਵੇਂਜਲੰਧਰ, ਗੁਰਮੀਤ, ਪੰਜਾਬ, ਸੁਰਜ, ਅਮਰੀਕਾ, ਅਕਾਸ਼, ਸਤਲੁਜ, ਬਿਆਸ, ਰਾਵੀ, ਚੰਡੀਗੜ੍ਹ, ਜੰਡਿਆਲਾ, ਗੁਰੂ ਗੋਬਿੰਦ ਸਿੰਘ, ਆਨੰਦਪੁਰ ਸਾਹਿਬ ਆਦਿ ।

3. ਇਕੱਠਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਗਿਣਨਯੋਗ ਵਸਤੁਆਂ ਦੇ ਇਕੱਠ ਜਾਂ ਸਮੂਹ ਲਈ ਵਰਤੇ ਜਾਣ, ਉਨ੍ਹਾਂ ਨੂੰ ‘ਇਕੱਠਵਾਚਕ ਨਾਂਵ” ਆਖਦੇ ਹਨ ; ਜਿਵੇਂ-ਟੀਮ, ਜਮਾਤ, ਸਭਾ, ਝੰਡ, ਮੰਡਲੀ, ਡਾਰ, ਹੇੜ, ਢੇਰ, ਕਮੇਟੀ, ਵੱਗ, ਕਤਾਰ, ਪਰਜਾ, ਲੋਕ ਆਦਿ ।

4. ਵਸਤੂਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਉਨ੍ਹਾਂ ਚੀਜ਼ਾਂ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਕੇਵਲ ਤੋਲੀਆਂ ਜਾਂ ਮਿਲੀਆਂ ਹੀ ਜਾ ਸਕਣ, ਪਰ ਗਿਣੀਆਂ ਨਾ ਜਾ ਸਕਣ, ਉਨ੍ਹਾਂ ਨੂੰ “ਵਸਤਵਾਚਕ ਨਾਂਵ’ ਆਖਦੇ ਹਨ ; ਜਿਵੇਂ-ਸੋਨਾ, ਚਾਂਦੀ, ਪਾਣੀ, ਰੇਤ, ਲੋਹਾ, ਤੇਲ, ਖੰਡ, ਪੱਥਰ, ਸ਼ਰਬਤ, ਪਾਣੀ ਆਦਿ ।

5. ਭਾਵਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੀਆਂ ਚੀਜ਼ਾਂ ਨਾ ਦੇਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਤੇ ਨਾ ਹੀ ਫੜੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਕੇਵਲ ਅਨੁਭਵ ਹੀ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਉਨ੍ਹਾਂ ਲਈ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਸ਼ਬਦਾਂ ਨੂੰ ‘ਭਾਵਵਾਚਕ ਨਾਂਵ ਕਿਹਾ ਹੈ ; ਜਿਵੇਂ-ਮਿਠਾਸ, ਖ਼ੁਸ਼ੀ, ਗ਼ਮੀ, ਕੁੜੱਤਣ, ਜੁਆਨੀ, ਪਿਆਰ, ਸੇਵਾ, ਸੱਚ, ਪੁੰਨ, ਪਾਪ, ਦੁੱਖ, ਬਿਮਾਰੀ, ਹਾਸਾ, ਕਮਜ਼ੋਰੀ ਆਦਿ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

ਪ੍ਰਸ਼ਨ 2.
ਹੇਠ ਲਿਖਿਆਂ ਦੀ ਪਰਿਭਾਸ਼ਾ ਲਿਖੋ
(ਉ) ਵਸਤੂਵਾਚਕ ਨਾਂਵ
(ਅ) ਇੱਕਠਵਾਚਕ ਨਾਂਵ
(ਈ) ਭਾਵਵਾਚਕ ਨਾਂਵ ।
ਉੱਤਰ :

(ਉ) ਵਸਤੂਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਉਨ੍ਹਾਂ ਚੀਜ਼ਾਂ ਲਈ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਕੇਵਲ ਤੋਲੀਆਂ ਜਾਂ ਮਿਲੀਆਂ ਹੀ ਜਾ ਸਕਣ, ਪਰ ਗਿਣੀਆਂ ਨਾ ਜਾ ਸਕਣ, ਉਨ੍ਹਾਂ ਨੂੰ “ਵਸਤਵਾਚਕ ਨਾਂਵ’ ਆਖਦੇ ਹਨ ; ਜਿਵੇਂ-ਸੋਨਾ, ਚਾਂਦੀ, ਪਾਣੀ, ਰੇਤ, ਲੋਹਾ, ਤੇਲ, ਖੰਡ, ਪੱਥਰ, ਸ਼ਰਬਤ, ਪਾਣੀ ਆਦਿ ।

(ਅ) ਇਕੱਠਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੇ ਸ਼ਬਦ ਗਿਣਨਯੋਗ ਵਸਤੁਆਂ ਦੇ ਇਕੱਠ ਜਾਂ ਸਮੂਹ ਲਈ ਵਰਤੇ ਜਾਣ, ਉਨ੍ਹਾਂ ਨੂੰ ‘ਇਕੱਠਵਾਚਕ ਨਾਂਵ” ਆਖਦੇ ਹਨ ; ਜਿਵੇਂ-ਟੀਮ, ਜਮਾਤ, ਸਭਾ, ਝੰਡ, ਮੰਡਲੀ, ਡਾਰ, ਹੇੜ, ਢੇਰ, ਕਮੇਟੀ, ਵੱਗ, ਕਤਾਰ, ਪਰਜਾ, ਲੋਕ ਆਦਿ ।

(ਈ) ਭਾਵਵਾਚਕ ਨਾਂਵ :
ਜਿਹੜੀਆਂ ਚੀਜ਼ਾਂ ਨਾ ਦੇਖੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਤੇ ਨਾ ਹੀ ਫੜੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਕੇਵਲ ਅਨੁਭਵ ਹੀ ਕੀਤੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਉਨ੍ਹਾਂ ਲਈ ਵਰਤੇ ਜਾਣ ਵਾਲੇ ਸ਼ਬਦਾਂ ਨੂੰ ‘ਭਾਵਵਾਚਕ ਨਾਂਵ ਕਿਹਾ ਹੈ ; ਜਿਵੇਂ-ਮਿਠਾਸ, ਖ਼ੁਸ਼ੀ, ਗ਼ਮੀ, ਕੁੜੱਤਣ, ਜੁਆਨੀ, ਪਿਆਰ, ਸੇਵਾ, ਸੱਚ, ਪੁੰਨ, ਪਾਪ, ਦੁੱਖ, ਬਿਮਾਰੀ, ਹਾਸਾ, ਕਮਜ਼ੋਰੀ ਆਦਿ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

ਪ੍ਰਸ਼ਨ 3.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚੋਂ ਨਾਂਵ ਚੁਣੋ । ਉਨ੍ਹਾਂ ਦੀ ਕਿਸਮ ਵੀ ਦੱਸੋ-
(ਉ) ਸ਼ੇਰ ਜੰਗਲ ਦਾ ਰਾਜਾ ਮੰਨਿਆ ਗਿਆ ਹੈ ।
(ਅ) ਹਰ ਚਮਕਣ ਵਾਲੀ ਚੀਜ਼ ਸੋਨਾ ਨਹੀਂ ਹੁੰਦੀ ।
(ਈ) ਨੇਕੀ ਦਾ ਫਲ ਮਿੱਠਾ ਹੁੰਦਾ ਹੈ ।
(ਸ) ਜਮਾਤ ਵਿਚ ਤੀਹ ਵਿਦਿਆਰਥੀ ਬੈਠੇ ਹਨ ।
(ਰ) ਬਜ਼ਾਰੋਂ ਸਰੋਂ ਦਾ ਤੇਲ ਲਿਆਉ ।
(ਕ) ਮੋਹਣ ਸਿੰਘ ਨੇ ਮੁੰਡੇ ਦਾ ਵਿਆਹ ਬੜੀ ਧੂਮ-ਧਾਮ ਨਾਲ ਕੀਤਾ ।
(ਖ) ਬਿੱਲੀ ਨੇ ਚੂਹਿਆਂ ਨੂੰ ਮਾਰ ਮੁਕਾਇਆ ।
(ਗ) ਜਵਾਨੀ ਦੀਵਾਨੀ ਹੁੰਦੀ ਹੈ ।
(ਘ) ਅੱਜ ਬਹੁਤ ਗ਼ਰਮੀ ਹੈ ।
(ਛ) ਮੋਰ ਪੈਲ ਪਾ ਕੇ ਥੱਕ ਗਿਆ ਹੈ ।
ਉੱਤਰ :
(ਉ) ਸ਼ੇਰ, ਜੰਗਲ, ਰਾਜਾ-ਆਮ ਨਾਂਵ ।
(ਅ) ਚੀਜ਼-ਆਮ ਨਾਂਵ, ਸੋਨਾ-ਵਸਤੂਵਾਚਕ ਨਾਂਵ ।
(ਇ) ਨੇਕੀ-ਭਾਵਵਾਚਕ ਨਾਂਵ, ਫਲ-ਆਮ ਨਾਂਵ ।
(ਸ) ਜਮਾਤ-ਇਕੱਠਵਾਚਕ ਨਾਂਵ : ਵਿਦਿਆਰਥੀ-ਆਮ ਨਾਂਵ ।
(ਰ) ਬਜ਼ਾਰੋਂ-ਆਮ ਨਾਂਵ; ਸਗੋਂ, ਤੇਲ-ਵਸਤੂਵਾਚਕ ਨਾਂਵ
(ਕ) ਮੋਹਣ ਸਿੰਘ-ਖ਼ਾਸ ਨਾਂਵ, ਮੁੰਡੇ-ਆਮ ਨਾਂਵ | ਵਿਆਹ-ਭਾਵਵਾਚਕ ਨਾਂਵ ।
(ਖ) ਬਿੱਲੀ, ਚੂਹਿਆਂ-ਆਮ ਨਾਂਵ ।
(ਗ) ਜਵਾਨੀ-ਭਾਵਵਾਚਕ ਨਾਂਵ ।
(ਘ) ਗਰਮੀ-ਭਾਵਵਾਚਕ ਨਾਂਵ ।
(ਛ) ਮੋਰ, ਪੈਲ-ਆਮ ਨਾਂਵ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

ਪ੍ਰਸ਼ਨ 4.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਦੇ ਸਾਹਮਣੇ ਨਾਂਵ ਦੀ ਕਿਸਮ ਲਿਖੋ-
((ੳ) ਸੁਹੱਪਣ
(ਅ) ਫੁੱਲ
(ਈ) ਇਸਤਰੀ
(ਸ) ਲੋਹਾ
(ਹ) ਖ਼ੁਸ਼ੀ
(ਕ) ਤੇਲ
(ਖ) ਸੁਗੰਧ
(ਗ) ਮਨੁੱਖਤਾ
(ਘ) ਗੰਗਾ
(ਛ) ਜਮਾਤ ।
ਉੱਤਰ :
(ੳ) ਸੁਹੱਪਣ – ਭਾਵਵਾਚਕ ਨਾਂਵ
(ਅ) ਫੁੱਲ – ਆਮ ਨਾਂਵ
(ਇ) ਇਸਤਰੀ – ਆਮ ਨਾਂਵ
(ਸ) ਲੋਹਾ – ਵਸਤੂਵਾਚਕ ਨਾਂਵ
(ਹੀ) ਖ਼ੁਸ਼ੀ – ਭਾਵਵਾਚਕ ਨਾਂਵ
(ਕ) ਤੇਲ – ਵਸਤਵਾਚਕ ਨਾਂਵ
(ਖੀ) ਸੁਗੰਧ – ਭਾਵਵਾਚਕ ਨਾਂਵ
(ਗ) ਮਨੁੱਖਤਾ – ਭਾਵਵਾਚਕ ਨਾਂਵ
(ਘ) ਗੰਗਾ – ਖ਼ਾਸ ਨਾਂਵ
(ਝਛ) ਜਮਾਤ-ਇਕੱਠਵਾਚਕ ਨਾਂਵ ।

ਪ੍ਰਸ਼ਨ 5.
ਖ਼ਾਲੀ ਥਾਂਵਾਂ ਭਰੋ-
(ਉ) ਨਾਂਵ ………… ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ।
(ਅ) ਜਿਨ੍ਹਾਂ ਸ਼ਬਦਾਂ ਤੋਂ ਕਿਸੇ ਮਨੁੱਖ, ਵਸਤੂ, ਥਾਂ ਆਦਿ ਦਾ ਨਾਂ ਪਤਾ ਲੱਗੇ, ਉਨ੍ਹਾਂ ਨੂੰ ………… ਕਹਿੰਦੇ ਹਨ ।
(ਈ) ਆਮ ਨਾਂਵ ਦਾ ਦੂਸਰਾ ਨਾਂਵ ………… ਨਾਂਵ ਹੈ ।
(ਸ) ਨਿੱਜ-ਵਾਚਕ ਨਾਂਵ ਨੂੰ ………… ਵੀ ਕਹਿੰਦੇ ਹਨ ।
(ਹ) ਸ਼ੀਲਾ, ਮੀਨਾ ਤੇ ਸੁਨੀਤਾ ………… ਨਾਂਵ ਅਖਵਾਉਂਦੇ ਹਨ ।
(ਕ) ਸੈਨਾ, ਜਮਾਤ, ਇੱਜੜ ………… ਨਾਂਵ ਅਖਵਾਉਂਦੇ ਹਨ ।
(ਖਿ) ਸ਼ਹਿਰ, ਪਿੰਡ, ਪਹਾੜ ………… ਨਾਂਵ ਅਖਵਾਉਂਦੇ ਹਨ ।
(ਗ) ਸ੍ਰੀ ਗੁਰੂ ਗੋਬਿੰਦ ਸਿੰਘ ਜੀ, ਬੰਦਾ ਬਹਾਦਰ ………… ਨਾਂਵ ਅਖਵਾਉਂਦੇ ਹਨ ।
(ਘ) ਖੰਡ, ਗੁੜ, ਕਣਕ, ………….. ਨਾਂਵ ਹਨ ।
(ਛ) ਗਰਮੀ, ਸਰਦੀ, ਜਵਾਨੀ ………… ਨਾਂਵ ਹਨ ।
ਉੱਤਰ :
(ੳ) ਪੰਜ
(ਅ) ਆਮ ਨਾਂਵ
(ਈ) ਜਾਤੀਵਾਚਕ
(ਸ) ਖ਼ਾਸ ਨਾਂਵ
(ਹ) ਖ਼ਾਸ ਨਾਂਵ
(ਕ) ਇਕੱਠਵਾਚਕ
(ਖ) ਆਮ
(ਗ) ਖ਼ਾਸ
(ਘ) ਵਸਤਵਾਚਕ
(ਛ) ਭਾਵਵਾਚਕ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ-ਨਾਂਵ

ਪ੍ਰਸ਼ਨ 6.
ਠੀਕ ਵਾਕਾਂ ਦੇ ਸਾਹਮਣੇ (✓) ਅਤੇ ਗਲਤ ਵਾਕਾਂ ਦੇ ਸਾਹਮਣੇ (✗) ਲਗਾਓ
(ੳ) ਖ਼ਾਸ ਸਥਾਨ, ਵਸਤੂ, ਵਿਅਕਤੀ ਦਾ ਗਿਆਨ ਦੇਣ ਵਾਲਾ ਸ਼ਬਦ ਆਮ ਨਾਂਵ ਹੁੰਦਾ ਹੈ ।
(ਅ) ਸੈਨਾ, ਦਲ, ਸਭਾ, ਇੱਜੜ, ਡਾਰ, ਇਕੱਠਵਾਚਕ ਨਾਂਵ ਹਨ ।
(ਇ) ਖ਼ੁਸ਼ੀ, ਉਦਾਸੀ, ਗ਼ਮੀ ਵਸਤੂਵਾਚਕ ਨਾਂਵ ਹਨ ।
(ਸ) ਪੁਸਤਕ, ਮਨੁੱਖ, ਸ਼ਹਿਰ, ਪਿੰਡ ਆਮ ਨਾਂਵ ਹਨ ।
(ਹ) ਨਾਂਵ ਅੱਠ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ ।
(ਕ) ਦਿੱਲੀ, ਹਿਮਾਲਾ, ਖ਼ਾਸ ਨਾਂਵ ਹਨ ।
ਉੱਤਰ :
(ੳ) ਖ਼ਾਸ ਸਥਾਨ, ਵਸਤੂ, ਵਿਅਕਤੀ ਦਾ ਗਿਆਨ ਦੇਣ ਵਾਲਾ ਸ਼ਬਦ ਆਮ ਨਾਂਵ ਹੁੰਦਾ ਹੈ । (✗)
(ਅ) ਸੈਨਾ, ਦਲ, ਸਭਾ, ਇੱਜੜ, ਡਾਰ, ਇਕੱਠਵਾਚਕ ਨਾਂਵ ਹਨ । (✓)
(ਇ) ਖ਼ੁਸ਼ੀ, ਉਦਾਸੀ, ਗ਼ਮੀ ਵਸਤੂਵਾਚਕ ਨਾਂਵ ਹਨ । (✗)
(ਸ) ਪੁਸਤਕ, ਮਨੁੱਖ, ਸ਼ਹਿਰ, ਪਿੰਡ ਆਮ ਨਾਂਵ ਹਨ । (✓)
(ਹ) ਨਾਂਵ ਅੱਠ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ । (✗)
(ਕ) ਦਿੱਲੀ, ਹਿਮਾਲਾ, ਖ਼ਾਸ ਨਾਂਵ ਹਨ । (✓)

ਪ੍ਰਸ਼ਨ 7.
ਹੇਠ ਲਿਖੇ ਨਾਂਵ ਸ਼ਬਦਾਂ ਵਿਚੋਂ ਖ਼ਾਸ ਨਾਂਵ ਤੇ ਆਮ ਨਾਂਵ ਚੁਣੋ-
ਸੈਨਾ, ਜਮਾਤ, ਇੱਜੜ, ਸ੍ਰੀ ਗੁਰੂ ਨਾਨਕ ਦੇਵ ਜੀ, ਦਿੱਲੀ, ਹਿਮਾਲਾ, ਸਰਦੀ, ਗਰਮੀ, ਜਵਾਨੀ, ਡਾਰ, ਖੰਡ, ਗੁੜ, ਕਣਕ, ਸ਼ਹਿਰ, ਪਿੰਡ, ਪਹਾੜ ।
ਉੱਤਰ :
ਆਮ ਨਾਂਵ – ਸ਼ਹਿਰ, ਪਿੰਡ, ਪਹਾੜ !
ਖ਼ਾਸ ਨਾਂਵ – ਸ੍ਰੀ ਗੁਰੂ ਨਾਨਕ ਦੇਵ ਜੀ, ਦਿੱਲੀ, ਹਿਮਾਲਾ ।

PSEB 8th Class Punjabi Vyakaran ਸ਼ੁੱਧ ਸ਼ਬਦ-ਜੋੜ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Sudha sabada-jora ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਸ਼ੁੱਧ ਸ਼ਬਦ-ਜੋੜ

ਅਸ਼ੁੱਧ – ਸ਼ੁੱਧ
ਏਨਕ – ਐਨਕ
ਅਮਰ – ਉਮਰ
ਓੜ – ਔੜ
ਉੱਗਲੀ – ਉੱਗਲੀ
ਸ਼ੜਕ – ਸੜਕ
ਸੂਕਰ – ਸ਼ੁਕਰ
ਸੀਸਾ – ਸ਼ੀਸ਼ਾ
ਛੱਕਰ – ਸ਼ੱਕਰ
ਬਿਆਹ – ਵਿਆਹ
ਬਕੀਲ – ਵਕੀਲ
ਵਾਹਰਲਾ – ਬਾਹਰਲਾ
ਹਬਾ – ਹਵਾ
ਉੱਘ – ਉੱਘ
ਇੰਜ – ਇੰਵ
ਕਉਂ – ਕਿਉ
ਸਿਂਧ – ਸਿੱਧ
ਕੁੰਜਾ – ਕੁੰਜ
ਸੰਗ – ਸਾਂਗ
ਗੰਦ – ਗੇਂਦ
ਗੈਤਿ – ਗੈਂਡਾ
ਡੰਗ – ਡੀਗ
ਚੌਂਦਾ – ਚੌਦਾ

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ

ਸ਼ਪਾਹੀ – ਸਿਪਾਹੀ
ਜਹਾਜ – ਜਹਾਜ਼
ਜੁਲਮ – ਜ਼ੁਲਮ
ਅਵਾਜ – ਅਵਾਜ਼
ਗਾਲ – ਗਾਲ
ਵਾਲ – ਵਾਲ
ਪੀਲਾ – ਪੀਲਾ
ਪਾਲਾ – ਪਾਲਾ
ਵਰਹਾ – ਵਰ੍ਹਾ
ਸਵਰ – ਸੂਰ
ਸਵੈਮਾਨ – ਸ਼ੈ-ਮਾਨ
ਸਵੈਜੀਵਨੀ – ਸੈਂ-ਜੀਵਨੀ
ਕਠਿਨ – ਕਠਨ
ਪੜੈਣਾ – ਪੜ੍ਹਾਉਣਾ
ਅੰਘ – ਅੰਗ
ਸੁੰਗਣਾ – ਸੁੰਘਣਾ
ਪੰਘ – ਪੰਗਾ
ਹੰਜੂ – ਹੰਝੂ
ਕੁੱਜੇ – ਕੁੱਝੂ

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ

ਪੂੰਜ – ਪੂੰਝੂ
ਜੱਜ – ਜੱਞ
ਸਾਂਜ – ਸਾਂਝ
ਸੌਹਰਾ – ਸਹੁਰਾ
ਮੌਹਰਾ – ਮੌਹੁਰਾ
ਮੁਕਤਿ – ਮੁਕਤੀ
ਗਤਿ – ਗਤੀ
ਛਾਂ – ਸ਼ਾਂ
ਸੰਨਾ – ਛੰਨਾ
ਛੈਹਿਰ – ਸ਼ਹਿਰ
ਸੱਤ – ਛੱਤ
ਮੇਹਨਤ – ਮਿਹਨਤ
ਮੇਹਰ – ਮਿਹਰ
ਜੇਹੜਾ – ਜਿਹੜਾ
ਕੇਹੜਾ – ਕਿਹੜਾ
ਜੇਹਾ – ਜਿਹਾ
ਮੱਜ – ਮੱਝ
ਏਹ – ਇਹ
ਠੰਡ – ਠੰਢ
ਸਾਂਡੂ – ਸਾਂਢੁ
ਆਡੂਾ – ਆਢੁ
ਉਦਾਰ – ਉਧਾਰ
ਦੁੱਦ – ਦੁੱਧ
ਧੰਧਾ – ਧੰਦਾ
ਰਿਦਾ – ਗਿੱਧਾ

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ

ਬੁੱਦੀ – ਬੁੱਦੀ
ਰੈਹਣਾ – ਰਹਿਣਾ
ਮਾਲਾ – ਮਾਲਾ
ਪੰਤੂ – ਪਰੰਤੂ
ਪਰਿੰਸੀਪਲ – ਪ੍ਰਿੰਸੀਪਲ
ਪਰੇਮ – ਪ੍ਰੈਸ
ਮਿਤ – ਮਿੱਤਰ
ਪਰੈਸ – ਪ੍ਰੈੱਸ
ਇੰਦ – ਇੰਦਰ
ਪਰਸ਼ਨ – ਪ੍ਰਸ਼ਨ
ਵਰੁਣਾ – ਵਨਾ
ਖੁਰਣਾ – ਖੁਰਨਾ
ਸੇਹਤ – ਸਿਹਤ
ਸੁਹਣਾ- ਸੋਹਣਾ
ਲੋਬ – ਲੋਭ
ਸਬ – ਸਭ
ਭਾਭੀ – ਭਾਬੀ
ਓ ਕਿਰਸਾਨਾਂ – ਓ ਕਿਰਸਾਨਾ
ਬਲੇ – ਬੱਲੇ
ਜਵਾਨਾਂ – ਜਵਾਨਾ
ਮਾਮਾਂ – ਮਾਮਾ
ਨੈਹਰ – ਨਹਿਰ

PSEB 8th Class Punjabi Vyakaran ਸ਼ਬਦਾਂ ਦੇ ਭੇਦ

ਬੈਹਰਾ – ਬਹਿਰਾ
ਪੈਹਰਾ – ਪਹਿਰਾ
ਗਯਾਨੀ – ਗਿਆਨੀ
ਵਯਾਕਰਨ – ਵਿਆਕਰਨ
ਪਧਯਾ – ਮੱਧ
ਵਾਂਗ – ਵਾਂਝ
ਸ਼ਕਤਿ – ਸ਼ਕਤੀ
ਸੁਧਾਰਿਕ – ਸੁਧਾਰਕ
ਆਰਥਿਕ – ਆਰਥਕ
ਰਾਜਨੀਤਿਕ – ਰਾਜਨੀਤਕ
ਕਵਿ – ਕਵੀ
ਫ਼ੈਦਾ – ਫਾਇਦਾ
ਸ਼ੈਤ – ਸ਼ਾਇਦ
ਲੈਕ – ਲਾਇਕ
ਸ਼ਕੈਤ – ਸ਼ਕਾਇਤ
ਚੌਣਾ – ਗਾਉਣਾ
ਬਚੌਣਾ – ਬਚਾਉਣਾ

ਪ੍ਰਸ਼ਨ 1.
ਹੇਠ ਲਿਖੇ ਸ਼ਬਦਾਂ ਨੂੰ ਸ਼ੁੱਧ ਕਰ ਕੇ ਲਿਖੋ
(ੳ) ਮੇਹਨਤ, ਵੇਹੜਾ, ਦੁਪੈਹਰ, ਔਰਤ, ਸ਼ੈਹਰ, ਬੋਹਤਾ, ਚੋਲ ।
(ਅ) ਵੋਹਟੀ, ਭਿਖਾਰਣ, ਆਯਾ, ਅਬਿਆਸ, ਦੱਦ, ਰੈਂਹਦਾ ।
(ਇ) ਨੈਹਰ, ਕਚੈਹਰੀ, ਪੀਂਗ, ਗੋਬੀ, ਸੌਂਹ, ਜੇਹੜਾ, ਕੇਹੜਾ, ਪੈਹਲਾ ।
(ਸ) ਗੈਹਣਾ, ਸੀਤਲ, ਸ਼ਿਖ਼ਰ, ਸ਼ੜਕ, ਸੌਹਰਾ, ਬੌਹਵਰਨ, ਨੌਂਹ ।
(ਹ ਲੈਕ, ਪੈਹਰਾ, ਰੈਸ, ਸੁੰਗਨਾ, ਕੁਜ, ਸੀਸਾ ।
ਉੱਤਰ :
(ੳ) ਮਿਹਨਤ, ਵਿਹੜਾ, ਦੁਪੈਹਰ, ਔਰਤ, ਸ਼ਹਿਰ, ਬਹੁਤਾ, ਚੌਲ ।
(ਅ) ਵਹੁਟੀ, ਭਿਖਾਰਨ, ਆਇਆ, ਅਭਿਆਸ, ਦੁੱਧ, ਰਹਿੰਦਾ ।
(ਈ) ਨਹਿਰ, ਕਚਹਿਰੀ, ਪੀਰਾ, ਗੋਭੀ, ਸਹੁੰ, ਜਿਹੜਾ, ਕਿਹੜਾ, ਪਹਿਲਾ ।
(ਸ) ਗਹਿਣਾ, ਸੀਤਲ, ਸਿਖਰ, ਸੜਕ, ਸਹੁਰਾ, ਬਹੁਵਚਨ, ਨਹੁੰ ।
(ਹ) ਲਾਇਕ, ਪਹਿਰਾ, ਪ੍ਰਿੰਸ, ਸੁੰਘਣਾ, ਕੁਝ, ਸ਼ੀਸ਼ਾ ।

PSEB 8th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Varnamala ਵਰਨਮਾਲਾ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਵਰਨਮਾਲਾ

ਪਸ਼ਨ 1.
ਲਿਪੀ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਦਾ ਨਾਂ ਲਿਖੋ ।
ਉੱਤਰ :
ਭਾਸ਼ਾ ਦੀਆਂ ਧੁਨੀਆਂ ਨੂੰ ਲਿਖਤੀ ਰੂਪ ਵਿਚ ਅੰਕਿਤ ਕਰਨ ਲਈ ਕੁੱਝ ਚਿੰਨ੍ਹ ਵਰਤੇ ਜਾਂਦੇ ਹਨ । ਇਨ੍ਹਾਂ ਚਿੰਨ੍ਹਾਂ ਦੇ ਸਮੂਹ ਨੂੰ “ਲਿਪੀ’ ਕਿਹਾ ਜਾਂਦਾ ਹੈ । ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਦਾ ਨਾਂ ਗੁਰਮੁਖੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਵਰਨ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਇਨ੍ਹਾਂ ਦੇ ਕਿੰਨੇ ਭੇਦ ਹਨ ? ਸੰਖੇਪ ਰੂਪ ਵਿਚ ਉੱਤਰ ਦਿਓ ।
ਉੱਤਰ :
ਮਨੁੱਖ ਜਦੋਂ ਬੋਲਦਾ ਹੈ, ਤਾਂ ਉਸ ਦੇ ਮੂੰਹੋਂ ਭਿੰਨ-ਭਿੰਨ ਪ੍ਰਕਾਰ ਦੀਆਂ ਅਵਾਜ਼ਾਂ ਧੁਨੀਆਂ) ਨਿਕਲਦੀਆਂ ਹਨ । ਇਨ੍ਹਾਂ ਅਵਾਜ਼ਾਂ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਲਈ, ਜੋ ਚਿੰਨ੍ਹ ਮਿੱਥੇ ਗਏ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਵਰਨ ਜਾਂ ਅੱਖਰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ , ਜਿਵੇਂ-ਕ, ਚ, ਟ, ਤ, ਪ । ਇਨ੍ਹਾਂ ਅਵਾਜ਼ਾਂ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਲਈ ਮੁੰਹ ਦੇ ਸਾਰੇ ਅੰਗ ਬੁਲ, ਜੀਭ, ਦੰਦ, ਤਾਲੁ ਤੇ ਸੰਘ ਆਦਿ ਰਲ ਕੇ ਹਿੱਸਾ ਪਾਉਂਦੇ ਹਨ । ਮਨੁੱਖੀ ਸਾਹ ਜਦੋਂ ਬਾਹਰ ਨਿਕਲਦਾ ਹੈ, ਤਾਂ ਉਹ ਮੁੰਹ ਦੇ ਇਨ੍ਹਾਂ ਅੰਗਾਂ ਨਾਲ ਟਕਰਾਉਂਦਾ ਹੈ, ਤਦ ਮੂੰਹ ਵਿਚੋਂ ਭਿੰਨ-ਭਿੰਨ ਅਵਾਜ਼ਾਂ ਧੁਨੀਆਂ) ਨਿਕਲਦੀਆਂ ਹਨ । ਇਨ੍ਹਾਂ ਅਵਾਜ਼ਾਂ ਨੂੰ ਲਿਖਣ ਲਈ, ਜੋ ਚਿੰਨ੍ਹ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਨੂੰ ਹੀ ਵਰਨ ਜਾਂ ਅੱਖਰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ । ਇਹ ਅੱਖਰ ਮਿਲ ਕੇ ਸ਼ਬਦ ਬਣਦੇ ਹਨ ।

PSEB 8th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ

ਪ੍ਰਸ਼ਨ 3.
ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੇ ਕਿੰਨੇ ਵਰਨ ਅੱਖਰ ਹਨ ? ਇਨ੍ਹਾਂ ਨੂੰ ਕਿੰਨੇ ਭਾਗਾਂ ਵਿਚ ਵੰਡਿਆ ਜਾਂਦਾ ਹੈ ?
ਉੱਤਰ :
ਗੁਰਮੁਖੀ ਲਿਪੀ ਦੇ 35 ਅੱਖਰ ਹਨ । ਇਨ੍ਹਾਂ ਵਿਚ ਫ਼ਾਰਸੀ ਦੀਆਂ ਪੰਜ ਧੁਨੀਆਂਸ਼, ਖ਼, ਗ਼, ਜ਼, ਫ਼-ਦੇ ਸ਼ਾਮਲ ਹੋਣ ਨਾਲ ਇਨ੍ਹਾਂ ਦੀ ਗਿਣਤੀ 40 ਹੋ ਜਾਂਦੀ ਹੈ ।
ਇਨ੍ਹਾਂ ਤੋਂ ਬਿਨਾਂ ਪੰਜਾਬੀ ਦੀ ਇਕ ਮੌਲਿਕ ਅਵਾਜ਼ ਨੂੰ ਪ੍ਰਗਟ ਕਰਨ ਲਈ ‘ਲ’ ਦੇ ਪੈਰ ਵਿਚ ਬਿੰਦੀ (ਲ ਲਾਉਣ ਦਾ ਰਿਵਾਜ ਵੀ ਪ੍ਰਚੱਲਤ ਹੋ ਗਿਆ ਹੈ । ਇਸ ਦੀ ਲੋੜ ਹੇਠ ਲਿਖੇ ਅੱਖਰਾਂ ਦਾ ਅਰਥ-ਭੇਦ ਦੱਸਣ ਨਾਲ ਸਪੱਸ਼ਟ ਹੋ ਜਾਂਦੀ ਹੈ
1. ਪਲ-ਉਹ ਇੱਥੇ ਘੜੀ-ਪਲ ਹੀ ਟਿਕੇਗਾ ।
ਪਲ-ਉਹ ਮਾੜਾ-ਮੋਟਾ ਖਾ ਕੇ ਪਲ ਗਿਆ ।

2. ਤਲ-ਪਾਣੀ ਦੇ ਤਲ ਉੱਤੇ ਲਹਿਰਾਂ ਨੱਚ ਰਹੀਆਂ ਹਨ ।
ਤਲ-ਹਲਵਾਈ ਪਕੌੜੇ ਤਲ ਰਿਹਾ ਹੈ ।
ਗੁਰਮੁਖੀ ਵਰਨਮਾਲਾ ਦੇ ਵਰਨਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅੱਠ ਵਰਨਾਂ ਵਿਚ ਵੰਡਿਆ ਗਿਆ ਹੈ ।

ਮੁੱਖ ਵਰਗ
ਕ ਵਰਗੇ
ਚ ਵਰਗ
ਟ ਵਰਗ
ਤ ਵਰਗ
ਪ ਵਰਗ
ਅੰਤਿਮ ਵਰਗ
ਨਵੀਨ ਵਰਗ ਸ਼ ਖ਼ ਗ਼ ਜ਼ ਫ਼

ਪ੍ਰਸ਼ਨ 4.
ਪੰਜਾਬੀ ਵਰਨ (ਅੱਖਰ) ਕਿੰਨੀ ਪ੍ਰਕਾਰ ਦੇ ਹਨ ?
ਜਾਂ
ਪੰਜਾਬੀ ਦੇ ਕਿੰਨੇ ਵਰਨ ਸ਼ਰ, ਵਿਅੰਜਨ, ਅਨੁਨਾਸਿਕ ਤੇ ਦੁੱਤ ਹਨ ? ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਦੱਸੋ ।
ਉੱਤਰ :
ਰੂਪ ਅਤੇ ਉਚਾਰਨ ਦੇ ਫ਼ਰਕ ਕਰ ਕੇ ਪੰਜਾਬੀ ਵਰਨਾਂ (ਅੱਖਰਾਂ) ਦੇ ਚਾਰ ਭੇਦ
ਹਨ –
(ਉ) ਸ਼ਰ
(ਅ) ਵਿਅੰਜਨ
(ਇ) ਅਨੁਨਾਸਿਕ
(ਸ) ਦੁੱਤ ।

(ਉ) ਸੁਰ : ਉਨਾਂ ਵਰਨਾਂ ਨੂੰ ਸੁਰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦਾ ਉਚਾਰਨ ਕਿਸੇ ਹੋਰ ਅਵਾਜ਼ ਦੀ ਸਹਾਇਤਾ ਤੋਂ ਬਿਨਾਂ ਹੀ ਹੋ ਸਕੇ । ਪੰਜਾਬੀ ਵਿਚ ਕੇਵਲ ਤਿੰਨ ਵਰਨ ਹੀ ਸ਼ਰ ਹਨ-ੳ, ਅ, ੲ ।

(ਅ) ਵਿਅੰਜਨ : ਵਿਅੰਜਨ ਉਨ੍ਹਾਂ ਵਰਨਾਂ ਨੂੰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਿਨ੍ਹਾਂ ਦਾ ਉਚਾਰਨ ਕਰਨ ਸਮੇਂ ਸਾਹ ਮੂੰਹ ਵਿਚੋਂ ਬੇਰੋਕ ਬਾਹਰ ਨਿਕਲਦਾ ਹੈ । ਪੰਜਾਬੀ ਵਿਚ ਸ ਤੋਂ ੜ ਤਕ ਸਾਰੇ ਵਰਨ ਤੇ ਨਵੇਂ ਅੱਖਰ ਸਾਰੇ ਹੀ ਵਿਅੰਜਨ ਹਨ । ਇਨ੍ਹਾਂ ਦੀ ਕੁੱਲ ਗਿਣਤੀ 38 ਹੈ ।

(ਇ) ਅਨੁਨਾਸਿਕ : ਜਿਨ੍ਹਾਂ ਵਰਨਾਂ ਦੀਆਂ ਅਵਾਜ਼ਾਂ ਨੱਕ ਵਿਚੋਂ ਨਿਕਲਦੀਆਂ ਹਨ, ਉਹ ਅਨੁਨਾਸਿਕ ਹਨ । ਪੰਜਾਬੀ ਦੇ ਇਹ ਵਰਨ ਅਨੁਨਾਸਿਕ ਹਨ-ਝ, ਬ, ਣ, ਨ, ਮ ।

(ਸ) ਦੁੱਤ :
ਦੁੱਤ ਵਰਨਾਂ ਦੀ ਪੰਜਾਬੀ ਵਿਚ ਬਹੁਤ ਘੱਟ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ । ਇਨ੍ਹਾਂ ਦੀ ਬਹੁਤੀ ਵਰਤੋਂ ਹਿੰਦੀ ਤੇ ਸੰਸਕ੍ਰਿਤ ਵਿਚ ਹੁੰਦੀ ਹੈ । ਪੰਜਾਬੀ ਵਿਚ ਜੋ ਅੱਖਰ ਵਿਅੰਜਨਾਂ ਦੇ ਪੈਰਾਂ ਵਿਚ ਜੋੜ ਕੇ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਉਹ ‘ਦੁੱਤ ਵਰਨ’ ਅਖਵਾਉਂਦੇ ਹਨ । ਪੰਜਾਬੀ ਵਿਚ ਕੇਵਲ ਤਿੰਨਾਂ ਅੱਖਰਾਂ ਹ, ਰ, ਵ ਦੀ ਹੀ ਅਜਿਹੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਇਨ੍ਹਾਂ ਵਿਚੋਂ ਵ ਦੀ ਵਰਤੋਂ ਬਹੁਤ ਘੱਟ ਹੈ ਪਰ ਹ ਤੇ ਰ ਦੀ ਵਰਤੋਂ ਆਮ ਹੈ; ਜਿਵੇਂ ਪੜ੍ਹਨਾ, ਉਨ੍ਹਾਂ, ਇਨ੍ਹਾਂ, ਜਿਨ੍ਹਾਂ, ਪ੍ਰੇਮ, ਪ੍ਰੀਤਮ, ਸ਼੍ਰੀਮਾਨ, ਸ਼ੈ-ਮਾਨ, ਸ਼ੈ-ਜੀਵਨੀ ਆਦਿ ।

ਪ੍ਰਸ਼ਨ 5.
ਲਗਾਂ-ਮਾਤਰਾਂ ਕੀ ਹੁੰਦੀਆਂ ਹਨ ? ਪੰਜਾਬੀ ਵਿਚ ਕਿੰਨੀਆਂ ਲਗਾਂ-ਮਾਤਰਾਂ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ :
ਪੰਜਾਬੀ ਵਿਚ ਤਿੰਨ, ਸੂਰ ਹਨ-ਉ, ਅ ਤੇ ੲ, ਪਰੰਤੂ ਵਰਤੋਂ ਵਿਚ ਇਨ੍ਹਾਂ ਦੀ ਗਿਣਤੀ 10 ਹੈ, ਜੋ ਕਿ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੈ- ਅ ਆ ਇ ਈ ਏ ਐ ਉ ਊ ਓ ਔ ।

ਬੋਲੀ ਨੂੰ ਲਿਖਦੇ ਸਮੇਂ ਵਿਅੰਜਨਾਂ ਨਾਲ ਇਨ੍ਹਾਂ ਦੇ ਕੇਵਲ ਚਿੰਨ੍ਹ ਹੀ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਜੋ ਕਿ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹਨ-ਮੁਕਤਾ ਇਸ ਦਾ ਕੋਈ ਚਿੰਨ੍ਹ ਨਹੀਂ, ਕੰਨਾ (ਾ), ਸਿਹਾਰੀ (ਿ), ਬਿਹਾਰੀ (ੀ), ਔਕੜ (_), ਦੁਲੈਂਕੜ (-ੂ ), ਲਾਂ (ੇ), ਦੁਲਾਂ (ੈ) ਹੋੜਾ ( ੋ), ਕਨੌੜਾ (ੌ) ।

ਇਨ੍ਹਾਂ ਲਗਾਂ-ਮਾਤਰਾਂ ਦੀ ਵਰਤੋਂ ਲਈ ਕੁੱਝ ਵਿਸ਼ੇਸ਼ ਗੱਲਾਂ ਦਾ ਧਿਆਨ ਰੱਖਣਾ ਪੈਂਦਾ ਹੈ । ਉੱਪਰ ਲਿਖੀਆਂ ਸਾਰੀਆਂ ਲਗਾਂ ਸਾਰੇ ਵਿਅੰਜਨਾਂ ਨਾਲ ਲਗਦੀਆਂ ਹਨ । ਪਰੰਤੁ ਰਾਂ-ਉ, ਅ ਅਤੇ ੲ-ਨਾਲ ਇਹ ਸਾਰੀਆਂ ਨਹੀਂ ਲੱਗ ਸਕਦੀਆਂ । (ੳ, ਅ, ੲ ਨਾਲ ਲਗਾਂ ਉੱਪਰ ਲਿਖੇ ਅਨੁਸਾਰ ਹੀ ਲਗਦੀਆਂ ਹਨ ਅਰਥਾਤ ਉ ਨੂੰ ਔਂਕੜ (ਉ), ਦੁਲੈਂਕੜ (ਊ ਤੇ ਹੋੜਾ (ਓ) ਲਗਦੀਆਂ ਹਨ । ਅ’ ਨੂੰ ਮੁਕਤਾ (ਅ) ਕੰਨਾ (ਆ) ਤੇ ਦੁਲਾਵਾਂ (ਐ ਲੋਗਾਂ ਲਗਦੀਆਂ ਹਨ । ਇ’ ਨੂੰ ਸਿਹਾਰੀ (ਇ), ਬਿਹਾਰੀ (ਈ) ਤੇ ਲਾਂ (ਏ) ਲਗਾਂ ਲਗਦੀਆਂ ਹਨ ।

PSEB 8th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ

ਪ੍ਰਸ਼ਨ 6.
ਲਗਾਖਰ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਉਨ੍ਹਾਂ ਦੇ ਨਾਂ ਲਿਖੋ ।
ਉੱਤਰ :
ਇਨ੍ਹਾਂ ਤੋਂ ਬਿਨਾਂ ਗੁਰਮੁਖੀ ਵਿਚ ਲਗਾਂ ਦੇ ਨਾਲ ਕੁੱਝ ਚਿੰਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਵੀ ਹੁੰਦੀ ਹੈ, ਉਨ੍ਹਾਂ ਨੂੰ ਲਗਾਖਰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ । ਪੰਜਾਬੀ ਵਿਚ ਇਹ ਚਿੰਨ੍ਹ ਤਿੰਨ ਹਨ
(ਉ) ਬਿੰਦੀ PSEB 6th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ-1
(ਅ) ਟਿੱਪੀ PSEB 6th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ-2
(ਇ) ਅੱਧਕ PSEB 6th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ-3

ਪ੍ਰਸ਼ਨ 7.
ਪੰਜਾਬੀ ਲਗਾਖਰਾਂ ਦੀ ਕਿਨ੍ਹਾਂ-ਕਿਨ੍ਹਾਂ ਲਗਾਂ ਨਾਲ ਤੇ ਕਿਉਂ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ ? ਉਦਾਹਰਨਾਂ ਦੇ ਕੇ ਦੱਸੋ ।
ਉੱਤਰ :
ਦਸਾਂ ਲਗਾਂ ਵਿਚੋਂ ਜਦੋਂ ਕਿਸੇ ਦਾ ਉਚਾਰਨ ਨੱਕ ਵਿਚੋਂ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਉਸ ਦੇ ਨਾਲ ਬਿੰਦੀ ਅਤੇ ਟਿੱਪੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । ਦਸਾਂ ਲਗਾਂ ਵਿਚੋਂ ਛੇਆਂ ਨਾਲ ਬਿੰਦੀ ਲਗਦੀ ਹੈ ਅਤੇ ਚਹੁੰ ਨਾਲ ਟਿੱਪੀ ।

ਕੰਨਾ, ਬਿਹਾਰੀ, ਲਾਂ, ਦੁਲਾਂ, ਹੋੜਾ ਅਤੇ ਕਨੌੜਾ ਨਾਲ ਬਿੰਦੀ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ ; ਜਿਵੇਂ-ਗਾਂ, ਨਹੀਂ, ਗੇਂਦ, ਕੈਂਚੀ, ਜਦੋਂ, ਸੌਂ ।

ਮੁਕਤਾ, ਸਿਹਾਰੀ, ਔਂਕੜ ਅਤੇ ਦੁਲੈਂਕੜ ਨਾਲ ਟਿੱਪੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ; ਜਿਵੇਂ-ਚੰਦ, ਸਿੰਘ, ਚੁੰਝ, ਗੂੰਜ ।

ਇਸ ਤੋਂ ਬਿਨਾਂ ਉ, ਅ, ੲ ਨਾਲ ਲਗਾਖਰਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਨਿਯਮ ਕੁੱਝ ਭਿੰਨ ਹਨ, ਜਿਵੇਂ-ੳ, ਅ, ੲ ਨਾਲ ਲੱਗਣ ਵਾਲੀਆਂ ਅੱਠ ਲਗਾਂ-ਕੰਨਾ, ਬਿਹਾਰੀ, ਲਾਂ, ਦੁਲਾਂ, ਹੋੜਾ ਅਤੇ ਕਨੌੜਾ ਨਾਲ ਬਿੰਦੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ , ਜਿਵੇਂ-ਆਂਦਰ, ਸਾਈਂ, ਕਿਉਂ, ਖਾਉਂ, ਜਾਏਂ, ਐੱਠ, ਅੰਤਰਾ ।

ਜਦੋਂ ਅ’ ਮੁਕਤਾ ਹੁੰਦਾ ਹੈ ਅਤੇ ‘ਨੂੰ ਸਿਹਾਰੀ ਲੱਗੀ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਇਨ੍ਹਾਂ ਨਾਲ ਟਿੱਪੀ PSEB 6th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ-3 ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ , ਜਿਵੇਂ-ਅੰਗ, ਇੰਦਰ ।

ਅੱਧਕ :
ਹਿੰਦੀ ਅਤੇ ਸੰਸਕ੍ਰਿਤ ਵਿਚ ਕਈ ਅੱਖਰਾਂ ਦੀ ਦੋਹਰੀ ਅਵਾਜ਼ ਪ੍ਰਗਟ ਕਰਨ ਲੱਗਿਆਂ, ਉਸੇ ਅੱਖਰ ਨੂੰ ਅੱਧਾ ਅਤੇ ਨਾਲ ਹੀ ਪੂਰਾ ਪਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ , ਜਿਵੇਂ-ਕਥਾ, ਸਥਾ, ਡੀ ਆਦਿ । ਪਰੰਤੂ ਪੰਜਾਬੀ ਵਿਚ ਦੋਹਰੀ ਅਵਾਜ਼ ਪ੍ਰਗਟ ਕਰਨ ਲਈ ਅੱਧੇ ਅੱਖਰ ਨਹੀਂ ਪਾਏ ਜਾਂਦੇ, ਸਗੋਂ ਜਿਸ ਅੱਖਰ ਦੀ ਅਵਾਜ਼ ਦੋਹਰੀ ਕਰਨੀ ਹੋਵੇ, ਉਸ ਤੋਂ ਪਹਿਲੇ ਅੱਖਰ ਉੱਪਰ ਅੱਧਕ ਪਾ ਕੇ ਹੀ ਕੰਮ ਸਾਰ ਲਿਆ ਜਾਂਦਾ ਹੈ । ਇਸ ਲਈ ਉਪਰੋਕਤ ਸ਼ਬਦ ਪੰਜਾਬੀ ਵਿਚ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖੇ ਜਾਣਗੇ-ਬੱਚਾ, ਸੱਚਾ, ਅੱਛਾ ਆਦਿ। ।

ਪੰਜਾਬੀ ਵਿਚ ਅੱਧਕ ਦੀ ਵਰਤੋਂ ਉੱਥੇ ਹੀ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ ਮੁਕਤਾ, ਸਿਹਾਰੀ ਤੇ ਔਕੜ ਲਗਾਂ ਲੱਗੀਆਂ ਹੋਣ , ਜਿਵੇਂ-ਸੱਚ, ਹਿੱਕ, ਭੁੱਖਾ ਆਦਿ । ਅੰਗਰੇਜ਼ੀ ਦੇ ਕੁੱਝ ਅੱਖਰਾਂ ਨੂੰ ਪੰਜਾਬੀ ਵਿਚ ਲਿਖਣ ਸਮੇਂ ਦੁਲਾਵਾਂ (ਏ) ਨਾਲ ਵੀ ਇਸ ਦੀ ਵਰਤੋਂ ਹੁੰਦੀ ਹੈ; ਜਿਵੇਂਗੈਸ, ਪੈਂਨ ਆਦਿ ।

PSEB 8th Class Punjabi Vyakaran ਵਰਨਮਾਲਾ

ਪ੍ਰਸ਼ਨ 8.
ਖ਼ਾਲੀ ਸਥਾਨ ਭਰੋ
(ਉ) ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਦਾ ਨਾਂ ………… ਹੈ ।
(ਅ) ਗੁਰਮੁਖੀ ਲਿਪੀ ਵਿਚ ………… ਰ ਤੇ ………… ਵਿਅੰਜਨ ਹਨ !
(ਈ) ਹ, ਰ, ਵ ਗੁਰਮੁਖੀ ਵਿਚ ………… ਅੱਖਰ ਹਨ ।
(ਸ) ਗੁਰਮੁਖੀ ਲਿਪੀ ਵਿਚ ……… ਲਗਾਂਖਰ ਹਨ ।
(ਹ) ਅੱਧਕ, ਬਿੰਦੀ ਤੇ ਟਿੱਪੀ ਨੂੰ ………… ਆਖਿਆ ਜਾਂਦਾ ਹੈ ।
ਉੱਤਰ :
(ਉ) ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਦਾ ਨਾਂ ਗੁਰਮੁਖੀ ਹੈ ।
(ਅ) ਗੁਰਮੁਖੀ ਲਿਪੀ ਵਿਚ ਤਿੰਨ ਸੂਰ ਤੇ 38 ਵਿਅੰਜਨ ਹਨ ।
(ਇ) ਹ, ਰ, ਵ ਗੁਰਮੁਖੀ ਵਿਚ ਦੁੱਤ ਅੱਖਰ ਹਨ ।
(ਸ) ਗੁਰਮੁਖੀ ਲਿਪੀ ਵਿਚ ਤਿੰਨ ਲਗਾਖਰ ਹਨ ।
(ਹ) ਅੱਧਕ, ਬਿੰਦੀ ਤੇ ਟਿੱਪੀ ਨੂੰ ਲਗਾਖਰ ਆਖਿਆ ਜਾਂਦਾ ਹੈ ।

ਪ੍ਰਸ਼ਨ 9.
ਹੇਠ ਲਿਖੇ ਵਾਕਾਂ ਵਿਚੋਂ ਠੀਕ ਵਾਕ ਦੇ ਸਾਹਮਣੇ (✓) ਡੱਬੀ ਵਿਚ ਸਹੀ ਅਤੇ ਗ਼ਲਤ ਵਾਕ (✗) ਦੇ ਸਾਹਮਣੇ ਆ ਨਿਸ਼ਾਨ ਲਗਾਓ
(ਉ) ਬੋਲੀ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ।
(ਅ) ਬੋਲੀ ਜਾਂ ਭਾਸ਼ਾ ਰਾਹੀਂ ਅਸੀਂ ਆਪਣੇ ਮਨ ਦੇ ਭਾਵ ਦੂਜਿਆਂ ਨਾਲ ਸਾਂਝੇ ਕਰ ਸਕਦੇ ਹਾਂ ।
(ਈ) ਵਿਆਕਰਨ ਦੇ ਦੋ ਭਾਗ ਹੁੰਦੇ ਹਨ ।
(ਸ) ਆਮ ਬੋਲ-ਚਾਲ ਦੀ ਭਾਸ਼ਾ ਵਿਚ ਸਾਹਿਤ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ।
(ਹ) ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਗੁਰਮੁਖੀ ਹੈ ।
ਉੱਤਰ :
(ਉ) ਬੋਲੀ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ । (✓)
(ਅ) ਬੋਲੀ ਜਾਂ ਭਾਸ਼ਾ ਰਾਹੀਂ ਅਸੀਂ ਆਪਣੇ ਮਨ ਦੇ ਭਾਵ ਦੂਜਿਆਂ ਨਾਲ ਸਾਂਝੇ ਕਰ ਸਕਦੇ ਹਾਂ । (✓)
(ਈ) ਵਿਆਕਰਨ ਦੇ ਦੋ ਭਾਗ ਹੁੰਦੇ ਹਨ । (✗)
(ਸ) ਆਮ ਬੋਲ-ਚਾਲ ਦੀ ਭਾਸ਼ਾ ਵਿਚ ਸਾਹਿਤ ਦੀ ਰਚਨਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ । (✗)
(ਹ) ਪੰਜਾਬੀ ਬੋਲੀ ਦੀ ਲਿਪੀ ਗੁਰਮੁਖੀ ਹੈ । (✓)

PSEB 8th Class Punjabi Vyakaran ਬੋਲੀ, ਵਿਆਕਰਨ

Punjab State Board PSEB 8th Class Punjabi Book Solutions Punjabi Grammar Boli, Vyakarana ਬੋਲੀ, ਵਿਆਕਰਨ Textbook Exercise Questions and Answers.

PSEB 8th Class Punjabi Grammar ਬੋਲੀ, ਵਿਆਕਰਨ

ਬੋਲੀ

ਪ੍ਰਸ਼ਨ 1.
ਬੋਲੀ ਜਾਂ ਭਾਸ਼ਾ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ?
ਉੱਤਰ :
ਮਨੁੱਖ ਜਿਨ੍ਹਾਂ ਸਾਰਥਕ ਅਵਾਜ਼ਾਂ (ਧੁਨੀਆਂ) ਰਾਹੀਂ ਆਪਣੇ ਮਨੋਭਾਵਾਂ ਤੇ ਵਿਚਾਰਾਂ ਨੂੰ ਦੂਜਿਆਂ ਅੱਗੇ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ, ਉਨ੍ਹਾਂ ਦੇ ਸਮੂਹਾਂ ਨੂੰ “ਬੋਲੀ” ਜਾਂ “ਭਾਸ਼ਾ’ ਆਖਿਆ ਜਾਂਦਾ ਹੈ ।

PSEB 8th Class Punjabi Vyakaran ਬੋਲੀ, ਵਿਆਕਰਨ

ਪ੍ਰਸ਼ਨ 2.
ਬੋਲੀ ਜਾਂ ਭਾਸ਼ਾ ਕਿੰਨੇ ਪ੍ਰਕਾਰ ਦੀ ਹੁੰਦੀ ਹੈ ?
ਉੱਤਰ :
ਮਨੁੱਖ ਆਪਣੇ ਮਨੋਭਾਵਾਂ ਨੂੰ ਦੋ ਤਰ੍ਹਾਂ ਲਿਖ ਕੇ ਜਾਂ ਬੋਲ ਕੇ ਪ੍ਰਗਟ ਕਰਦਾ ਹੈ । ਇਸ ਕਰਕੇ ਬੋਲੀ ਵੀ ਦੋ ਪ੍ਰਕਾਰ ਦੀ ਮੰਨੀ ਜਾਂਦੀ ਹੈ
(ਉ) ਬੋਲ-ਚਾਲ ਦੀ ਬੋਲੀ ਅਤੇ
(ਅ) ਸਾਹਿਤਕ ਜਾਂ ਟਕਸਾਲੀ ਬੋਲੀ ।

ਵਿਆਕਰਨ

ਪ੍ਰਸ਼ਨ 1.
ਵਿਆਕਰਨ ਕਿਸ ਨੂੰ ਆਖਦੇ ਹਨ ? ਇਸ ਦੇ ਕਿੰਨੇ ਭਾਗ ਹੁੰਦੇ ਹਨ ? ਸੰਖੇਪ ਉੱਤਰ ਦਿਓ ।
ਉੱਤਰ :
ਬੋਲੀ ਦੇ ਸ਼ਬਦ-ਰੂਪਾਂ ਤੇ ਵਾਕ-ਬਣਤਰ ਦੇ ਨੇਮਾਂ ਨੂੰ ‘ਵਿਆਕਰਨ’ ਕਹਿੰਦੇ ਹਨ । ਬੋਲੀ ਦੀ ਠੀਕ ਵਰਤੋਂ ਕਰਨ ਲਈ ਵਿਆਕਰਨ ਦੇ ਨਿਯਮਾਂ ਤੋਂ ਜਾਣੂ ਹੋਣਾ ਜ਼ਰੂਰੀ ਹੈ । ਇਹ ਗੱਲ ਵੀ ਜਾਣ ਲੈਣੀ ਜ਼ਰੂਰੀ ਹੈ ਕਿ ਬੋਲੀ ਅਤੇ ਵਿਆਕਰਨ ਇਕੱਠੀਆਂ ਹੀ ਜਨਮ ਲੈਂਦੀਆਂ ਹਨ । ਵਿਆਕਰਨਿਕ ਨਿਯਮਾਂ ਵਿਚ ਬੱਝ ਕੇ ਬੋਲੀ ਸਾਹਿਤਕ ਰੂਪ ਧਾਰਨ ਕਰਦੀ ਹੈ ।

ਪ੍ਰਸ਼ਨ 2.
ਵਿਆਕਰਨ ਦੇ ਕਿੰਨੇ ਭੇਦ (ਅੰਗ) ਹਨ ? ਵਿਸਥਾਰ ਸਹਿਤ ਲਿਖੋ !
ਉੱਤਰ :
ਵਿਦਵਾਨਾਂ ਨੇ ਵਿਆਕਰਨ ਨੂੰ ਹੇਠ ਲਿਖੇ ਤਿੰਨ ਭੇਦਾਂ ਵਿਚ ਵੰਡਿਆ ਹੈ
1. ਵਰਨ-ਬੋਧ : ਇਸ ਦੁਆਰਾ ਸਾਨੂੰ ਵਰਨਾਂ ਅਤੇ ਲਗਾਂ-ਮਾਤਰਾਂ ਦੇ ਉਚਾਰਨ ਤੇ ਸਹੀ ਵਰਤੋਂ ਦੇ ਨਿਯਮਾਂ ਦਾ ਗਿਆਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
2. ਸ਼ਬਦ-ਬੋਧ : ਇਸ ਦੁਆਰਾ ਸ਼ਬਦ ਦੇ ਭਿੰਨ-ਭਿੰਨ ਰੂਪਾਂ, ਸ਼ਬਦ-ਰਚਨਾ ਤੇ ਸ਼ਬਦ-ਵੰਡ ਦੇ ਨਿਯਮਾਂ ਦਾ ਗਿਆਨ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ ।
3. ਵਾਕ-ਬੋਧ : ਇਸ ਦੁਆਰਾ ਅਸੀਂ ਵਾਕ-ਰਚਨਾ, ਵਾਕ-ਵਟਾਂਦਰਾ, ਵਾਕ-ਵੰਡ ਤੇ ਵਿਸਰਾਮ ਚਿੰਨ੍ਹਾਂ ਦੀ ਵਰਤੋਂ ਦੇ ਨੇਮਾਂ ਬਾਰੇ ਗਿਆਨ ਪ੍ਰਾਪਤ ਕਰਦੇ ਹਾਂ ।

PSEB 8th Class Punjabi Vyakaran ਬੋਲੀ, ਵਿਆਕਰਨ

ਪ੍ਰਸ਼ਨ 3.
ਸ਼ਬਦ ਕੀ ਹੁੰਦਾ ਹੈ ? ਇਸ ਦੀਆਂ ਕਿੰਨੀਆਂ ਕਿਸਮਾਂ ਹੁੰਦੀਆਂ ਹਨ ? ਉਦਾਹਰਨਾਂ ਸਹਿਤ ਉੱਤਰ ਦਿਓ ।
ਉੱਤਰ :
ਸ਼ਬਦ ਬੋਲੀ ਦੀ ਇਕ ਸਭ ਤੋਂ ਛੋਟੀ ਸੁਤੰਤਰ ਇਕਾਈ ਹੁੰਦਾ ਹੈ । ਇਸ ਦਾ ਅਰਥ ਸਪੱਸ਼ਟ ਹੁੰਦਾ ਹੈ, ਜੋ ਕਿ ਛੋਟੇ ਤੋਂ ਛੋਟਾ ਹੁੰਦਾ ਹੈ । ਇਕ ਸ਼ਬਦ ਵਿਚ ਅਵਾਜ਼ਾਂ (ਧੁਨੀਆਂ ਦੀ ਗਿਣਤੀ ਇਕ ਵੀ ਹੋ ਸਕਦੀ ਹੈ ਤੇ ਇਕ ਤੋਂ ਵੱਧ ਵੀ ; ਜਿਵੇਂ- ‘ਮੈਂ ਫੁੱਟਬਾਲ ਖੇਡਾਂਗਾ । ‘ਇਸ ਵਾਕ ਵਿਚ ਤਿੰਨ ਸ਼ਬਦ ਹਨ, ਜੋ ਆਪਣੇ ਆਪ ਵਿਚ ਬੋਲੀ ਦੀਆਂ ਸੁਤੰਤਰ ਇਕਾਈਆਂ ਹਨ ਇਨ੍ਹਾਂ ਦੇ ਅਰਥ ਸਪੱਸ਼ਟ ਅਤੇ ਆਪਣੇ-ਆਪ ਵਿਚ ਛੋਟੇ ਤੋਂ ਛੋਟੇ ਹਨ । ਇਨ੍ਹਾਂ ਸ਼ਬਦਾਂ ਵਿਚ ਅਵਾਜ਼ਾਂ (ਧੁਨੀਆਂ ਦੀ ਗਿਣਤੀ ਨਿਸ਼ਚਿਤ ਨਹੀਂ ।

ਪਰੰਪਰਾਗਤ ਵਿਆਕਰਨਾਂ ਵਿਚ ਸ਼ਬਦਾਂ ਦੇ ਦੋ ਭੇਦ ਦੱਸੇ ਗਏ ਹਨ-ਸਾਰਥਕ ਤੇ ਨਿਰਾਰਥਕ 1 ਪਰ ਇਹ ਠੀਕ ਨਹੀਂ । ਅਸਲ ਵਿਚ ਭਾਸ਼ਾ ਦਾ ਕੋਈ ਵੀ ਸ਼ਬਦ ਨਿਰਾਰਥਕ ਨਹੀਂ ਹੁੰਦਾ । ਜੇਕਰ ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ‘ਪਾਣੀ ਪੀਓ ਤਾਂ ‘ਪਾਣੀ ਦਾ ਅਰਥ ਕੇਵਲ ਪਾਣੀ ਹੀ ਹੈ, ਪਰ ਜੇਕਰ ਅਸੀਂ “ਪਾਣੀ-ਧਾਣੀ ਪੀਓ’ ਕਹਿੰਦੇ ਹਾਂ, ਤਾਂ ‘ਪਾਣੀ-ਧਾਣੀ ਦਾ ਅਰਥ ਸ਼ਰਬਤ, ਸਕੰਜਵੀ, ਲੱਸੀ ਜਾਂ ਸ਼ਰਾਬ ਵੀ ਹੋ ਸਕਦਾ ਹੈ ।

ਰੁਪ ਅਨੁਸਾਰ ਸ਼ਬਦਾਂ ਦੇ ਦੋ ਮੁੱਖ ਭੇਦ ਹਨ-
(1) ਵਿਕਾਰੀ
(2) ਅਵਿਕਾਰੀ ।
1. ਵਿਕਾਰੀ :
ਉਨ੍ਹਾਂ ਸ਼ਬਦਾਂ ਨੂੰ ਜਿਨ੍ਹਾਂ ਦਾ ਰੂਪ, ਲਿੰਗ, ਵਚਨ ਤੇ ਕਾਲ ਕਰਕੇ ਬਦਲ ਜਾਵੇ, ਵਿਕਾਰੀ ਸ਼ਬਦ ਕਹਿੰਦੇ ਹਨ । ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ ਤੇ ਕਿਰਿਆ ਵਿਕਾਰੀ ਸ਼ਬਦ ਹਨ ।

2. ਅਵਿਕਾਰੀ :
ਉਹ ਸ਼ਬਦ ਅਵਿਕਾਰੀ ਹੁੰਦੇ ਹਨ, ਜਿਨ੍ਹਾਂ ਦੇ ਰੂਪ ਲਿੰਗ, ਵਚਨ ਤੇ ਕਾਲ ਕਰਕੇ ਨਾ ਬਦਲਣ । ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ, ਯੋਜਕ, ਸੰਬੰਧਕ, ਵਿਸਮਿਕ, ਅਵਿਕਾਰੀ ਸ਼ਬਦ ਹਨ । ਪ੍ਰਯੋਗ ਅਨੁਸਾਰ ਸ਼ਬਦ ਅੱਠ ਪ੍ਰਕਾਰ ਦੇ ਹੁੰਦੇ ਹਨ-ਨਾਂਵ, ਪੜਨਾਂਵ, ਵਿਸ਼ੇਸ਼ਣ, ਕਿਰਿਆ, ਕਿਰਿਆ ਵਿਸ਼ੇਸ਼ਣ, ਸੰਬੰਧਕ, ਤੇ ਯੋਜਕ ।

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Punjab State Board PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids Important Questions and Answers.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Very Short Answer Type Questions

Question 1.
Two identical solid balls, one of ivory and the other of wet clay, are dropped from the same height on the floor. Which will rise to a greater height after striking the floor and why?
Answer:
The ball of ivory will rise to a greater height because ivory is more elastic than wet-clay.

Question 2.
Is it possible to double the length of a metallic wire by applying a force over it?
Answer:
No, it is not possible because, within elastic limit, strain is only order of 10-3, wires actually break much before it is stretched to double the length.

Question 3.
Is stress a vector quantity? (NCERT Exemplar)
Stress = \(\frac{\text { Magnitude of internal reaction force }}{\text { Area of cross – section }}\)
Therefore, stress is a scalar quantity, not a vector quantity.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 4.
What does the slope of stress versus strain graph indicate?
Answer:
The slope of stress (on y-axis) and strain (on x-axis) gives modulus of elasticity.
The slope of stress (on x-axis) and strain (on y-axis) gives the reciprocal of modulus of elasticity.

Question 5.
Stress and pressure are both forces per unit area. Then in what respect does stress differ from pressure?
Answer:
Pressure is an external force per unit area, while stress is the internal restoring force which comes into play in a deformed body acting transversely per unit area of a body.

Question 6.
What is the Young’s modulus for a perfect rigid body?
Solution:
Young’s modulus (Y) = \(\frac{F}{A} \times \frac{l}{\Delta l}\)
For a perfectly rigid body, change in length Δl = 0
∴ Y = \(\frac{F}{A} \times \frac{l}{0}\) = ∞
Therefore, Young’s modulus for a perfectly rigid body is ∞.

Question 7.
What is Bulk modulus for a perfectly rigid body?
Solution:
Bulk modulus (B) = \(\frac{p}{\Delta V / V}=\frac{p V}{\Delta V}\)
For perfectly rigid body, change in volume ΔV = 0
∴ B = \(\frac{p V}{0}\) = ∞
Therefore, Bulk modulus for a perfectly rigid body is ∞.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Short Answer Type Questions

Question 1.
Explain why steel is more elastic than rubber?
Solution:
Consider two pieces of wires, one of steel and the other of rubber. Suppose both are of equal length (L) and of equal area of cross-section (a). Let each be stretched by equal forces, each being equal to F. We find that the change in length of the rubber wire (lr) is more than that of the steel (ls)i.e.,lr>ls.
If Ys and Yr are the Young’s moduli of steel and rubber respectively, then from the definition of Young’s modulus,
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 1
i. e,, the Young’s modulus of steel is more than that of rubber. Hence steel is more elastic than rubber.
Or
Any material which offers more opposition to the deforming force to change its configuration is more elastic.

Question 2.
Elasticity is said to be internal property of matter. Explain.
Answer:
When a deforming force acts on a body, the atoms of the substance get displaced from their original positions. Due to this, the configuration of the body (substance) changes. The moment, the deforming force is removed, the atoms return to their original positions and hence, the substance or body regains its original configuration. That is why, elasticity is said to be internal property of matter.

Question 3.
A wire elongates by l mm when a load W is hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, then what will be the elongation of the wire in mm?
Solution:
According to Hooke’s law,
Modulus of elasticity, E = \(\frac{W}{A} \times \frac{L}{l}\)
where, L = original length of the wire
A- cross-sectional area of the wire
Elongation, l = \(\frac{W L}{A E}\) ………………………… (i)
On either side of the wire, tension is W and length is L/2.
Δl = \(\frac{W L / 2}{A E}=\frac{W L}{2 A E}=\frac{l}{2}\) [from eq.(i)]
Total elongation in the wire = \(\frac{l}{2}+\frac{l}{2}\) = l

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 4.
A bar of cross-section A is subjected to equal and opposite tensile forces at its, ends. Consider a plane section of the bar whose normal makes an angle θ with the axis of the bar.
(i) What is the tensile stress on this plane?
(ii) What is the shearing stress on this plane?
(iii) For what value of θ is the tensile stress maximum?
(iv) For what value of θ is the shearing stress maximum?
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 2
Solution:
(i) The resolved part of F along the normal is the tensile force on this plane and the resolved part parallel to the plane is the shearing force on the plane.
∵ Area of MO plane section = A sec θ
Tensile stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F \cos \theta}{A \sec \theta}=\frac{F}{A} \cos ^{2} \theta\)
= [ ∵ sec θ = \(\frac{1}{\cos \theta}\)]

(ii) Shearing stress applied on the top face
So, F = F sinθ
Shearing stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F \sin \theta}{A \sec \theta}\)
= \(\frac{F}{A}\) sinθcosθ
= \(\frac{F}{2 A} \sin 2 \theta\) [∵ sin 2θ = 2sinθcosθ]

(iii) Tensile stress will be maximum when cos2θ is maximum i.e., cosθ = 1 or θ=0°.

(iv) Shearing stress will be maximum when sin20 is maximum i.e., sin2θ = 1 or 2θ = 90° or θ = 45°.

Question 5.
What is an elastomer? What are their special features?
Answer:
Elastomers are those substances which can be stretched to cause large strains.Substances like tissue of aorta, rubber etc., are elastomers.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 3
The stress-strain curve for an elastomer is shown in figure. Although elastic region is very large but the materials does not obey Hooke’s law over most of the region. Moreover, there is no well-defined plastic region.

Question 6.
The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress? (NCERT Exemplar)
Solution:
Young’s modulus (Y) = \( \frac{\text { Stress }}{\text { Longitudinal strain }}\)
For same longitudinal strain, Y ∝ stress
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 4
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 5

Question 7.
Why are the springs made of steel and not of copper?
Answer:
A spring will be better one if a large restoring force is set up in it on being deformed, which in turn depends upon the elasticity of the material of the spring. Since the Young’s modulus of elasticity of steel is more than that of copper, hence, steel is preferred in making the springs.

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 8.
Identical springs of steel and copper are equally stretched. On which, more work will have to be done? (NCERT Exemplar)
Solution:
Work done in stretching a wire is given by
W =- \(\frac{1}{2}\) F x Δl
As springs of steel and copper are equally stretched.
Therefore, for same force (F).
W ∝ Δl …………………………………… (i)

Young’s modulus (Y) = \(\frac{F}{A} \times \frac{l}{\Delta l}\)
or Δl = \(\frac{F}{A} \times \frac{l}{Y}\)
As both spring are identical,
∴ Δl ∝ \(\frac{1}{Y}\) …………………………………. (ii)
From eqs. (i) and (ii), we get W ∝ \(\frac{1}{Y}\) .
∴ \(\frac{W_{\text {steel }}}{W_{\text {copper }}}=\frac{Y_{\text {copper }}}{Y_{\text {steel }}}<1\)
[as Ysteel > Ycopper]
or Wsteel < WCopper
Therefore, more work will be done for stretching copper spring.

Long Answer Type Questions

Question 1.
A steel wire of length 21 and cross-sectional area A is stretched within elastic limit as shown in figure. Calculate the strain and stress in the wire.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 6
Solution:
Total length L =21. Increase in length of the wire, when it is stretched from its mid-point.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 7
From Pythagoras theorem, BC2 =l2 + x2
BC= \(\sqrt{l^{2}+x^{2}}\)
Similarly, AC = \(\sqrt{l^{2}+x^{2}}\)
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 8

Since x<< l, so using Binomial expansion, we have
\(\left(1+\frac{x^{2}}{l^{2}}\right)^{1 / 2}=\left(1+\frac{x^{2}}{2 l^{2}}\right)\)
[Neglecting terms containing higher powers of x]
∴ ΔL = 2l\(\left(1+\frac{x^{2}}{2 l^{2}}\right)-2 l=\frac{x^{2}}{l}\)
Hence Strain = \(\frac{\Delta L}{L}=\frac{x^{2}}{l \times 2 l}=\frac{x^{2}}{2 l^{2}}\)

Stress = \(\frac{F}{A}=\frac{\text { Tension }}{\text { Area }} \)
So, area of cross section of wire having radius r is πr²
Stress = \(\frac{T}{\pi r^{2}}\)

PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids

Question 2.
Consider a long steel bar unde a tensile stress due to forces F acting at the edges along the length of the bar (figure). Consider a plane making an angle θ with the length. What are the tensile and shearing stresses on this plane?
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 9
(a) For what angle is the tensile stress a maximum?
(b) For what angle is the shearing stress a maximum? (NCERT Exemplar)
Solution:
Consider the adjacent diagram.
Let the cross-sectional area of the bar be A. Consider the equilibrium of the plane aa’.
A force F must be acting on this plane making an angle \(\frac{\pi}{2}\) – θ with the normal ON. Resolving F into components, along the plane (FP) and normal to the plane.
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 10
FP = F cosθ
FN = Fsinθ
Let the area of the face aa’ be A’, then
\(\frac{A}{A^{\prime}}\) = sinθ’
∴ A’= \(\frac{A}{\sin \theta}\)
PSEB 11th Class Physics Important Questions Chapter 9 Mechanical Properties of Solids 11
(a) For tensile stress to be maximum, sin2θ =1
⇒ sinθ = 1
⇒ θ = \(\frac{\pi}{2}\)
(b) For shearing stress to be maximum,
sin 2θ = 1
⇒ 2θ = \(\frac{\pi}{2}\)
⇒ θ = \(\frac{\pi}{4}\)

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 9 Mechanical Properties of Solids Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Solids

PSEB 11th Class Physics Guide Mechanical Properties of Solids Textbook Questions and Answers

Question 1.
A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m2 under a given load. What is the ratio of the Young’s modulus of steel to that of copper?
Solution:
Given, length of the steel wire, L1 = 4.7 m
Area of cross-section of the steel wire,A1 = 3.0 x 10-5 m2
Length of the copper wire, L2 = 3.5 m
Area of cross-section of the copper wire, A2 = 4.0 x 10-5 m2

Change in length = ΔL1 = ΔL2 = ΔL
Force applied in both the cases = F
Young’s modulus of the steel wire,
Y1 = \(\frac{F_{1}}{A_{1}} \times \frac{L_{1}}{\Delta L_{1}} \)
= \(\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta L} \) ………………………………. (i)
Young’s modulus of the copper wire,
Y2 = \(\frac{F_{2}}{A_{2}} \times \frac{L_{2}}{\Delta L_{2}}=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta L}\) ………………………………. (ii)
Dividing eq. (i) by eq. (ii), we get:
\(\frac{Y_{1}}{Y_{2}}=\frac{4.7 \times 4.0 \times 10^{-5}}{3.0 \times 10^{-5} \times 3.5}\) = 1.79:1
The ratio of Young’s modulus of steel to that of copper is 1.79: 1.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 2.
Figure given below shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strengths for this material?
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 1
Solution:
(a) It is clear from the given graph that for stress 150 x 106 N/m2, strain is 0.002.
∴ Young s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }}\)
= \(\frac{150 \times 10^{6}}{0.002}\) = 7.5 x 1010 N/m2
Hence, Young’s modulus for the given material is 7.5 x1010 N/m2

(b) The yield strength of a material is the maximum stress that the material can sustain without crossing the elastic limit. It is clear from the given graph that the approximate yield strength of this material is 300 x 106 N/m2 or 3 x 108 N/m2.

Question 3.
The stress-strain graphs for materials A and B are shown in figure given below.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 2
The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?
Solution:
(a) A, for a given strain, the stress for material A is more than it is for > material B, as shown in the two graphs.
Young’s modulus = \(\frac{\text { Stress }}{\text { Strain }}\)
For a given strain, if the stress for a material is more, then Young’s modulus is also greater for that material. Therefore, Young’s modulus for material A is greater than it is for material B.

(b) A, the amount of stress required for fracturing a material, corresponding to its fracture point, gives the strength of that material. Fracture point is the extreme point in a stress-strain curve. It can be observed that material A can withstand more strain than material B. Hence, material A is stronger than material B.

Question 4.
Read the following two statements below carefully and state, with reasons, if it is true or false.
(a) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.
Solution:
(a) False.
Reason: For a given stress, the strain in rubber is more than it is in steel.
Young’s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }} \)
For a constant stress Y ∝ \(\frac{1}{\text { Strain }}\)
Hence, Young’s modulus for rubber is less than it is for steel.

(b) True.
Reason: Shear modulus is the ratio of the applied stress to the change in the shape of a body. The stretching of a coil changes its shape. Hence, shear modulus of elasticity is involved in this process.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 5.
Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in figure given below. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m.
Compute the elongations of the steel and the brass wires.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 3
Solution:
Given, diameter of the wires, d = 0.25 cm
Hence, the radius of the wires, r = \(\frac{d}{2} \) = 0.125cm = 0.125 x 10-2m
Length of the steel wire, L1 = 1.5 m
Length of the brass wire, L2 = 1.0 m
Total force exerted on the steel wire,
F1 = (4 +6)g= 10×9.8 = 98N .

Young’s modulus for steel
Y1 = \(\frac{\left(\frac{F_{1}}{A_{1}}\right)}{\left(\frac{\Delta L_{1}}{L_{1}}\right)} \)
where, ΔL1 = Change in the length of the steel wire
A1 = Area of cross-section of the steel wire = πr²1

Young’s modulus of steel, Y1 = 2.0 x 1011 Pa
∴ ΔL1 = \(\frac{F_{1} \times L_{1}}{A_{1} \times Y_{1}}=\frac{F_{1} \times L_{1}}{\pi r_{1}^{2} \times Y_{1}}\)
= \(\frac{98 \times 1.5}{3.14\left(0.125 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}\)
= 1.5 x 10-4 m

Total force on the brass wire
F2 =6 x 9.8=58.8N
Young’s modulus for brass
Y2 = \(\frac{\left(\frac{F_{2}}{A_{2}}\right)}{\left(\frac{\Delta L_{2}}{L_{2}}\right)}\)

where, ΔL2 = Change in length of the steel wire
A2 = Area of cross-section of the brass wire
∴ ΔL2 = \(\frac{F_{2} \times L_{2}}{A_{2} \times Y_{2}}=\frac{F_{2} \times L_{2}}{\pi r_{2}^{2} \times Y_{2}}\)
= \(\frac{58.8 \times 1.0}{3.14 \times\left(0.125 \times 10^{-2}\right)^{2} \times\left(0.91 \times 10^{11}\right)}\)
= 1.3 x 10-4 m
Hence, elongation of the steel wire =1.49 x 10-4 m
and elongation of the brass wire = 1.3 x 10-4 m

Question 6.
The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a vertical wall. A mass of 100 kg Is the attached to the opposite face of the cube. The shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?
Solution:
Given, edge of the aluminium cube, L = 10cm = 0.1 m
The mass attached to the cube, m =100 kg
Shear modulus (ri) of aluminium = 25GPa =25 x 109 Pa
Shear modulus, η = \(\frac{\text { Shear stress }}{\text { Shear strain }}=\frac{\frac{F}{A}}{\frac{\Delta L}{L}}\)
where, F = Applied force = mg = 100 x 9.8 = 980 N
A = Area of one of the faces of the cube = 0.1 x 0.1 = 0.01 m2

ΔL = Vertical deflection of the cube
ΔL = \(\frac{F L}{A \eta}=\frac{980 \times 0.1}{10^{-2} \times\left(25 \times 10^{9}\right)}\)
= 3.92 x 10-7 m
The vertical deflection of this face of the cube is 3.92 x 10-7 m.

Question 7.
Four identical tblloW cylindrical columns of mild steel support a big structure of mass’50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
Solution:
Given, mass of the big structure, M = 50000 kg
Inner radius of the column, r = 30 cm = 0.3 m
Outer radius of the column, R = 60 cm = 0.6 m
Young’s modulus of steel, Y = 2 x 1011 Pa
Total force exerted, F =Mg = 50000 x 9.8N
Stress = Force exerted on a single column = \(\frac{50000 \times 9.8}{4}\) = 122500 N

Young’s modulus, Y = \(\frac{\text { Stress }}{\text { Strain }} \)
Strain = \(\frac{F}{\frac{A}{Y}} \)
where, Area, A = π(R2 – r2) = π[(0.6)2 – (0.3)2]
Strain = \(\frac{122500}{3.14\left[(0.6)^{2}-(0.3)^{2}\right] \times 2 \times 10^{11}}\) = 7.22 x 10-7
Hence, the compressional strain of each column is 7.22 x 10-7.
∴Compressional strain of all columns is given by
= 7.22 x 10 -7 x 4 = 2.88 x 10-6.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 8.
A piece of copper having a rectangular cross-section of 15.2 minxes 19.2 mm is pulled in tension with 44,500 N force, producing only elastic deformation. Calculate the resulting strain?
Solution:
Given, cross-section area.of copper piece (A) = 15.2 mm x 19.1 mm
= (15.2 x 19.1) x 10 -6m2
Force applied (F) = 44500 N
Young’s modulus (Y) =1.1 x 1011 Nm-2

Young s modulus (Y) = \(=\frac{\text { Longitudinal stress }}{\text { Longitudinal strain }}\)
or Longitudinal strain = \(\frac{\text { Longitudinal stress }}{\text { Young’s modulus }}\)
Young’s modulus
= \(\frac{(F / A)}{Y}=\frac{F}{A Y}\)
= \(\frac{44500}{15.2 \times 19.1 \times 10^{-6} \times 1.1 \times 10^{11}}\)
= 0.0013934.

Question 9.
A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum stress is not to exceed 108 Nm -2, what is the maximum load the cable can support?
Solution:
Radius of the steel cable, r = 1.5cm = 0.015m
Maximum allowable stress = 108 N m-2
Maximum stress = \(\frac{\text { Maximum force }}{\text { Area of cross – section }} \)
∴ Maximum force = Maximum stress x Area of cross – section
= 108 x π (0.015)2
= 7.065 x 104 N
Hence, the cable can support the maximum load of 7.065 x 104 N.

Question 10.
A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each mid are of copper and the middle one is of iron. Determine the ratio of their diameters if each is to have the same tension.
Solution:
The tension force acting on each wire is the same. Thus, the extension in each case is the same. Since the wires are of the same length, the strain will also be the same.
The relation for Young’s modulus is given as:
Y = \(\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\text { Strain }}=\frac{\frac{4 F}{\pi d^{2}}}{\text { Strain }}\) ……………………………. (i)
where, F = Tension force
A = Area of cross-section
d = Diameter of the wire
It can be inferred from equation (i) that Y ∝ \(\frac{1}{d^{2}}\)
Young’s modulus for iron, Y1 = 190 x 109 Pa
Diameter of the iron wire = d1
Young’s modulus for copper, Y2 = 110 x 109 Pa
Diameter of the copper wire = d2
Therefore, the ratio of their diameters is given as:
\(\frac{d_{2}}{d_{1}}=\sqrt{\frac{Y_{1}}{Y_{2}}}=\sqrt{\frac{190 \times 10^{9}}{110 \times 10^{9}}}=\sqrt{\frac{19}{11}}\)
= 1.31:11.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 11.
A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle.
The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire when the mass is at the lowest point of its path.
Solution:
Given, mass, m = 14.5kg
Length of the steel wire, l = 1.0 m
Angular velocity, ω = 2 rev / s
Cross-sectional area of the wire, a = 0.065cm2 = 0.065 x 10-4 m2
Let δl be died elongation of the wire when the mass is at the lowest point of its path.
When the mass is placed at the position of the vertical circle, the total force on the mass is :
F = mg+mlω2 ,
= 14.5 x 9.8 +14.5x 1 x (2)2 = 200.1 N

Young’s modulus = \(\frac{\text { Stress }}{\text { Strain }} \)
Y = \(\frac{\frac{F}{A}}{\frac{\Delta l}{l}}=\frac{F}{A} \cdot \frac{l}{\Delta l}\)
∴ Δl = \(\frac{F l}{A Y}\)

Young’s modulus for steel = 2 x 1011 Pa
∴ Δl = \(\frac{200.1 \times 1}{0.065 \times 10^{-4} \times 2 \times 10^{11}} \) = 1539.23 x 10-7
= 1.539 x 10-4
Hence, the elongation of the wire is 1.539 x 10-4 m.

Question 12.
Compute the bulk modulus of water from the following data: Initial volume =100.0 litre, Pressure increase =100.0atm (1 atm = 1.013 x 105 Pa), Final volume = 100.5 litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.
Solution:
Initial volume, V1 = 100.0 l x 10-3 m3
Final volume, V2 = 100.5l = 100.5 x 10-3 m-3
Increase in volume, V = V2 — V1 = 0.5 x 10-3 m3
Increase in pressure, Δp =100.0 atm = 100 x 1.013 x 105 Pa
Bulk modulus = \( \frac{\Delta p}{\frac{\Delta V}{V_{1}}}=\frac{\Delta p \times V_{1}}{\Delta V}\)
= \(\frac{100 \times 1.013 \times 10^{5} \times 100 \times 10^{-3}}{0.5 \times 10^{-3}}\) = 2.206 x 109 Pa
Bulk modulus of air = 1.0 x 105 Pa
∴ \(\frac{\text { Bulk modulus of water }}{\text { Bulk modulus of air }}=\frac{2.026 \times 10^{9}}{1.0 \times 10^{5}}\)
= 2.026 x 104
This ratio is very high because air is more compressible than water.

Question 13.
What is the density of water at a depth where pressure is 80.0 atm, given that its density at the surface is 103 x 103 kgm-3?
Solution:
Let the given depth be h.
Pressure at the given depth, p = 80.0 atm = 80 x 1.01 x 105 Pa
Density of water at the surface, ρ1 = 1.03 x 103 kg m-3
Let ρ2 be the density of water at the depth h.
Let V1 be the volume of water of mass m at the surface.
Let V2 be the volumé of water of mass m at the depth h.
Let ΔV be the change in volume.

ΔV = V1 – V2 = \(m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)\)
∴ Volumetric strain= \(\frac{\Delta V}{V_{1}}=m\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right) \times \frac{\rho_{1}}{m}\)
∴ \(\frac{\Delta V}{V_{1}}=1-\frac{\rho_{1}}{\rho_{2}}\) ………………………………. (i)

Bulk modulus, B = \(\frac{p V_{1}}{\Delta V}\)
\(\frac{\Delta V}{V_{1}}=\frac{p}{B}\)
Compressibility of water = \(\frac{1}{B}=45.8 \times 10^{-11} \mathrm{~Pa}^{-1}\)
∴ \(\frac{\Delta V}{V_{1}}=80 \times 1.013 \times 10^{5} \times 45.8 \times 10^{-11}\) = 3.71 x 10-3 ………….(ii)
From equations (i) and (ii), we get
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 4
Therefore, the density of water at the given depth (h) is 1.034 x 103 kg m-3.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 14.
Compute the fractional change in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm.
Solution:
Hydraulic pressure exerted on the glass slab, p = 10 atm = 10 x 1.013 x 105 Pa
Bulk modulus of glass, B = 37 x 109 Nm-2
Bulk modulus, B = \(\frac{p}{\frac{\Delta V}{V}}\)
where, \(\frac{\Delta V}{V}\) = Fractional change in volume
∴ \(\frac{\Delta V}{V}=\frac{p}{B}=\frac{10 \times 1.013 \times 10^{5}}{37 \times 10^{9}}\)
= 2.73 x 10-5
Hence, the fractional change in the volume of the glass slab is
2.73 x 10-5 = 2.73 x 10-3% = 0.0027%

Question 15.
Determine the volume contraction of a solid copper cube, 10 cm on an edge, when subjected to a hydraulic pressure of 7.0x 106 Pa.
Solution:
Length of an edge of the solid copper cube, l =10 cm = 0.1 m
Hydraulic pressure, p = 7.0 x 106 Pa
Bulk modulus of copper, B = 140 x 109 Pa
Bulk modulus, B = \(\frac{P}{\frac{P}{\Delta V}}\)
where, \(\frac{\Delta V}{V}\) = Volumetric strain
ΔV = Change in volume
V =,Original volume
ΔV = \(\frac{p V}{B}\)
Original volume of the cube, V = l3
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 5
Therefore, the volume contraction of the solid copper cube is 0.05 cm3.

Question 16.
How much should the pressure on a litre of water be changed to compress by 0.10%?
Solution:
Volume of water, V =1 L
It is given that water is to be compressed by 0.10%.
∴ Fractional change, \(\frac{\Delta V}{V}=\frac{0.1}{100 \times 1}=10^{-3}\)
Bulk modulus, B = \(\frac{p}{\frac{\Delta V}{V}}\)
p = B x \( \frac{\Delta V}{V}\)

Bulk modulus of water, B = 2.2 x 109 Nm-2
p = 22 x 109 x 10-3
=2.2 x 106 Nm-2
Therefore, the pressure on water should be 2.2 x 106 Nm-2.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Additional Exercises

Question 17.
Anvils made of single crystals of diamond, with the shape as shown in figure given below, are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 6
Solution:
Diameter of the cones at the narrow ends, d = 0.50 mm = 0.5 x 10-3m
radius, r = \( \frac{d}{2}\) = 0.25 x 10-3 m
Compressional force, F = 50000 N
Pressure at the tip of the anvil,
p = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{\pi r^{2}}\)
= \(\frac{50000}{3.14 \times\left(0.25 \times 10^{-3}\right)^{2}}\)
= 2.55 x 1011 Pa
Therefore, the pressure at the tip of the anvil is 2.55 x 1011 Pa.

Question 18.
A rod of length 1.05 m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in figure given below. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0mm2, respectively. At what point along the rod should a mass m he suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 7
Solution:
Given, cross-sectional area of wire A, a1 = 1.0 mm2 = 1.0 x 10-6 m2
Cross-sectional area of wire B, a2 = 2.0 mm2 = 2.0 x 10-6 m2
Young’s modulus for steel, Y1 = 2 x 1011 Nm-2
Young’s modulus for aluminium, Y2 = 7.0 x 1010 Nm-2

Let a small mass m be suspended to the rod at a distance y from the end where wire A is attached.
Stress in the wire = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{a}\)
If the two wires have equal stresses, then,
\( \frac{F_{1}}{a_{1}}=\frac{F_{2}}{a_{2}}\)
where, F1 = Force exerted on the steel wire

F2 = Force exerted on the aluminium wire
\(\frac{F_{1}}{F_{2}}=\frac{a_{1}}{a_{2}}=\frac{1}{2}\) …………………………. (i)
The situation is shown in the following figure.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 8
Taking torque about the point of suspension, we have
F1y = F2(1.05— y)
\(\frac{F_{1}}{F_{2}}=\frac{(1.05-y)}{y}\) ……………………….(ii)
Using equations (i) and (ii), we can write
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 9
In order to produce an equal stress in the two wires, the mass should be suspended at a distance of 0.7 m from the end where wire A is attached.

(b) Young s modulus = \(\frac{\text { Stress }}{\text { Strain }} \)
Strain = \(\frac{\text { Stress }}{\text { Young’s modulus }}=\frac{\frac{F}{a}}{Y}\)
If the strain in the two wires is equal, then,
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 10
Taking torque about the point where mass m, is suspended at a distance y1 from the side where wire A attached, we get
F1y1 =F2(1.05-y1)
\(\frac{F_{1}}{F_{2}}=\frac{\left(1.05-y_{1}\right)}{y_{1}}\) ……………………………. (iv)
Using equations (iii) and (iv), we get
\(\frac{\left(1.05-y_{1}\right)}{y_{1}}=\frac{10}{7}\)
7(1.05 – y1) = 10 y1
⇒ 17 y1 = 7.35
y1 = 0.432 m
In order to produce an equal strain in the two wires, the mass should be suspended at a distance of 0.432 m from the end where wire A is attached.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 19.
A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 10-2 cm2 is stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid-point of the wire. Calculate the depression at the mid-point.
Solution:
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 11
Length of the steel wire = 1.0 m
Area of cross-section, A = 0.50 x 10-2 cm2 = 0.50 x 10-6 m2
A mass 100 g is suspended from its mid-point.
m = 100 g = 0.1kg
Hence, the wire dips, as shown in the given figure.
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 12
Original length = XZ
Depression = l
The length after mass m, is attached to the wire = XO +OZ
Increase in the length of the wire:
Δl = (XO + OZ)-XZ
Where
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 13
Expanding and neglecting higher terms, we get:
Δl = \(\frac{l^{2}}{0.5}\)
Strain = \(\frac{\text { Increase in length }}{\text { Original length }}\)
Let T be the tension in the wire.

∴ mg = 2Tcos θ
Using the figure, it can be written as
Cos θ = \(\frac{l}{\left[(0.5)^{2}+l^{2}\right]^{\frac{1}{2}}}=\frac{l}{(0.5)\left[1+\left(\frac{l}{0.5}\right)^{2}\right]^{\frac{1}{2}}}\)
Expanding the expression and eliminating the higher terms, we get
Cos θ = \(\frac{l}{(0.5)\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)}\)
\(\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)\) ≈ 1 for small l
PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids 14
Hence, the depression at the mid-point is 0.0107 m.

Question 20.
Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0 mm. What is the maximum tension’ that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed 6.9 x 107 Pa?
Assume that each rivet is to carry one-quarter of the load.
Solution:
Diameter of the metal strip, d = 6.0 mm = 6.0 x 10-3 m
Radius, r = \(\frac{d}{2}\) = 3.0 x 10-3 m
Maximum shearing stress = 6.9 x 107 Pa
Maximum stress = \(\frac{\text { Maximum load or force }}{\text { Area }}\)
Maximum force = Maximum stress x Area
= 6.9 x 107 x π x (r)2
= 6.9 x 107 x 3.14 x (3 x10-3)2
= 1949.94 N
Each rivet carries one quarter of the load.
∴ Maximum tension on each rivet = 4 x 1949.94 = 7799.76 N.

PSEB 11th Class Physics Solutions Chapter 9 Mechanical Properties of Solids

Question 21.
The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of the water. The water pressure at the bottom of the trench is about 1.1 x 108 Pa. A steel ball of initial volume 0.32m is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?
Solution:
Water pressure at the bottom, p = 1.1 x 108 Pa
Initial volume of the steel ball, V = 0.32 m3
Bulk modulus of steel, B = 1.6 x 1011 Nm-2
The ball falls at the bottom of the Pacific Ocean, which is 11 km beneath the surface.
Let the change in the volume of the ball on reaching the bottom of the trench be ΔV.
Bulk modulus, B = \( \frac{p}{\frac{\Delta V}{V}}\)
ΔV = \(\frac{p V}{B}=\frac{1.1 \times 10^{8} \times 0.32}{1.6 \times 10^{11}}\)
= 2.2 x 10-4 m3
Therefore, the change in volume of the ball on reaching the bottom of the trench is 2.2 x 10-4 m3.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Punjab State Board PSEB 11th Class Physics Book Solutions Chapter 6 Work, Energy and Power Textbook Exercise Questions and Answers.

PSEB Solutions for Class 11 Physics Chapter 6 Work, Energy and Power

PSEB 11th Class Physics Guide Work, Energy and Power Textbook Questions and Answers

Question 1.
The sign of work done by a force on a body is important to understand. State carefully if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body sliding down an inclined plane,
(d) work done by an applied force on a body moving on a rough horizontal plane with uniform velocity,
(e) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.
Solution:
(a) Positive
In the given case, force and displacement are in the same direction. Hence, the sign of work done is positive. In this case, the work is done on the bucket.

(b) Negative
In the given case, the direction of force (vertically downward) and displacement (vertically upward) are opposite to each other. Hence, the sign of work done is negative.

(c) Negative
Since the direction of frictional force is opposite to the direction of motion, the work done by frictional force is negative in this case.

(d) Positive
Here the body is moving on a rough horizontal plane. Frictional force opposes the motion of the body. Therefore, in order to maintain a uniform velocity, a uniform force must be applied to the body. Since the applied force acts in the direction of motion of the body, the work done is positive.

(e) Negative
The resistive force of air acts in the direction opposite to the direction of motion of the pendulum. Hence, the work done is negative in this case.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 2.
A body of mass 2 kg initially at rest moves under the action of an applied horizontal force of 7 N on a table with coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in 10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the body in 10 s,
(d) change in kinetic energy of the body in 10 s, and interpret your results.
Solution:
Mass of the body, m = 2 kg
Applied force, F = 7 N
Coefficient of kinetic friction, μ = 0.1
Initial velocity, u = 0
Time, t = 10 s
The acceleration produced in the body by the applied force is given by Newton’s second law of motion as:
a’ = \(\frac{F}{m}\) = \(\frac{7}{2}\) = 3.5 m/s2
Frictional force is given as:
f = μ mg = 0.1 × 2 × 9.8 = -1.96 N
The acceleration produced by the frictional force:
a” = –\(\frac{1.96}{2}\) = -0.98 m/s2
Total acceleration of the body:
a = a’ + a”
= 3.5 + (-0.98) = 2.52 m/s2
The distance travelled by the body is given by the equation of motion:
s = ut + \(\frac{1}{2}\) at2
= 0 + \(\frac{1}{2}\) × 2.52 × (10)2 = 126 m
(a) Work done by the applied force, Wa = F × s = 7x 126 = 882 J
(b) Work done by the frictional force, Wf = f × s = -1.96 × 126 = -247 J
(c) Net force = 7 + (-1.96) = 5.04 N
Work done by the net force, Wnet = 5.04 × 126 = 635 J
(d) From the first equation of motion, final velocity can be calculated as:
υ = u + at
= 0 + 2.52 × 10 = 25.2 m/s
Change in kinetic energy = \(\frac{1}{2}\) mυ 2 – \(\frac{1}{2}\) mu2
= \(\frac{1}{2}\) × 2(υ2 – u2) = (25.2)2 – 02 = 635 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 3.
Given in figure below are examples of some potential energy functions in one dimension. The total energy of the particle is indicated by a cross on the ordinate axis. In each case, specify the regions, if any, in which the particle cannot be found for the given energy. Also, indicate the minimum total energy the particle muqt have in each case. Think of simple physical contexts for which these potential energy shapes are relevant.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 1
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 2
Solution:
Total energy of a system is given by the relation:
E = P.E. + K.E.
> K.E. = E – P.E.
Kinetic energy of a body is a positive quantity. It cannot be negative. Therefore, the particle will not exist in a region where K.E. becomes negative.
(i) In the given case, the potential energy (V0) of the particle becomes greater than total energy (E) for x > a. Hence, kinetic energy becomes negative in this region. Therefore, the particle will not exist in this region. The minimum total energy of the particle is zero.

(ii) In the given case, the potential energy (V0) is greater than total energy (E) in all regions. Hence, the particle will not exist in this region.

(iii) In the given case, the condition regarding the positivity of K.E. is satisfied only in the region between x > a and x<b.
The minimum potential energy in this case is -V1. Therefore, K.E. = E-(-V1) = E + V1.
Therefore, for the positivity of the kinetic energy, the total energy of the particle must be greater than -Vj. So, the minimum total energy the particle must have is -V1.

(iv) In the given case, the potential energy (V0) of the particle becomes greater than the total energy (E) for –\(\frac{b}{2}\)< x <\(\frac{b}{2}\) and –\(\frac{a}{2}\)< x <\(\frac{a}{2}\).
Therefore, the particle will not exist in these regions.
The minimum potential energy in this case is -V1. Therefore, K.E. = E – (-V1 ) = E + V1. Therefore, for the positivity of the kinetic energy, the total energy of the particle must be greater than -V1. So, the minimum total energy the particle must have is -V1.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 4.
The potential energy function for a particle executing linear simple harmonic motion is given by V (x) = kx2 / 2, where k is the force constant of the oscillator. For k = 0.5 Nm-1, the graph of V (x) versus x is shown in figure below. Show that a particle of total energy 1 J moving under this potential must ‘turn back’ when it reaches x = ±2m.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 3
Solution:
Total energy of the particle, E = 1 J
Force constant, k = 0.5 Nm-1
Kinetic energy of the particle, K = \(\frac{1}{2}\)mυ2
According to the conservation law:
E = V + K
1 = \(\frac{1}{2}\)kx2 + \(\frac{1}{2}\)mυ 2
At the moment of ‘turn back’, velocity (and hence K) becomes zero.
> 1 = \(\frac{1}{2}\)kx2
\(\frac{1}{2}\) × 0.5 ×2 = 1
x2 = 4
x = ±2
Hence, the particle turns back when it reaches x = ±2 m.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 5.
Answer the following:
(a) The casing of a rocket in flight burns up due to friction. At whose expense is the heat energy required for burning obtained? The rocket or the atmosphere?
(b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet due to the sun is not normal to the comet’s velocity in general. Yet the work done by the gravitational force over every complete orbit of the comet is zero. Why?
(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy gradually due to dissipation against atmospheric resistance, however small. Why then does its speed increase progressively as it comes closer and closer to the earth?
(d) In fig. (i) the man walks 2 m carrying a mass of 15 kg on his hands. In fig. (ii), he walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work done greater?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 4
Solution:
(a) The burning of the casing of a rocket in flight (due to friction) results in the reduction of the mass of the rocket.
According to the conservation of energy:
Total Energy (T.E.) = Potential energy (P.E.) + Kinetic energy (K.E.)
= mgh + \(\frac{1}{2}\) mυ2
The reduction in the rocket’s mass causes a drop in the total energy. Therefore, the heat energy required for the burning is obtained from the rocket.

(b) Gravitational force is a conservative force. Since the work done by a conservative force over a closed path is zero, the work done by the gravitational force over every complete orbit of a comet is zero.

(c) When an artificial satellite, orbiting around earth, moves closer to earth, its potential energy decreases because of the reduction in the height. Since the total energy of the system remains constant, the reduction in P.E. results in an increase in K.E. Hence, the velocity of the satellite increases. However, due to atmospheric friction, the total energy of the satellite decreases by a small amount.

(d) Case (i)
Mass, m = 15 kg
Displacement, s = 2 m
Work done, W = Fs cosθ
where, θ = Angle between force and displacement
= mgs cosθ = 15 × 2 × 9.8 cos 90°
= 0 ( cos90° = 0)

Case (ii)
Mass, m = 15 kg Displacement, s = 2 m
Here, the direction of the force applied on the rope and the direction of the displacement of the rope are same.
Therefore, the angle between them, θ =0°
Since, cos0° = 1
Work done, W = Fs cosθ = mgs
= 15 × 9.8 × 2 = 294J
Hence, more work is done in the second case.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 6.
Underline the correct alternative:
(a) When a conservative force does positive work on a body, the potential energy of the body increases/decreases/ remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/potential energy.
(c) The rate of change of total momentum of a many-particle system is proportional to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total energy of the system of two bodies.
Solution:
(a) Decreases, A conservative force does a positive work on a body when it displaces the body in the direction of force. As a result, the body advances toward the centre of force. It decreases the separation between the two, thereby decreasing the potential energy of the body.

(b) Kinetic energy, The work done against the direction of friction reduces the velocity of a body. Hence, there is a loss of kinetic energy of the body.

(c) External force, Internal forces, irrespective of their direction, cannot produce any change in the total momentum of a body. Hence, the total momentum of a many-particle system is proportional to the external forces acting on the system.

(d) Total linear momentum, The total linear momentum always remains conserved whether it is an elastic collision or an inelastic collision.

Question 7.
State if each of the following statements is true or false. Give reasons for your answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is conserved.
(b) Total energy of a system is always conserved, no matter what internal and external forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system.
Solution:
(a) False, In an elastic collision, the total energy and momentum of both the bodies, and not of each individual body, is conserved.

(b) False, Although internal forces are balanced, they cause no work to be done on a body. It is the external forces that have the ability to do work. Hence, external forces are able to change the energy of a system.

(c) False, The work done in the motion of a body over a closed loop is zero for a conservation force only.

(d) True, In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy of the system. This is because in such collisions, there is always a loss of energy in the form of heat, sound, etc.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 8.
Answer carefully, with reasons:
(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved during the short time of collision of the balls (i. e., when they are in contact)?
(b) Is the total linear momentum conserved during the short time of an elastic collision of two balls?
(c) What are the answers to (a) and (b) for an inelastic collision?
(d) If the potential energy of two billiard balls depends only on the separation distance between their centres, is the collision elastic or inelastic? (Note, we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).
Solution:
(a) No, In an elastic collision, the total initial kinetic eneigy of the bails will be equal to the total final kinetic energy of the balls. This kinetic energy is not conserved at the instant the two balls are in contact with each other. In fact, at the time of collision, the kinetic energy of the balls will get converted into potential energy.

(b) Yes, In an elastic collision, the total linear momentum of the system always remains conserved.

(c) No, In an inelastic collision, there is always a loss of kinetic energy, i. e., the total kinetic energy of the billiard balls before collision will always be greater than that after collision.
Yes, The total linear momentum of the system of billiards balls will remain conserved even in the case of an inelastic collision.

(d) Elastic, In the given case, the forces involved are conservation. This is because they depend on the separation between the centres of the billiard balls. Hence, the collision is elastic.

Question 9.
A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to
(i) \(t^{\frac{1}{2}}\)
(ii) t
(iii) \(t^{\frac{3}{2}}\)
(iv) t2
Solution:
(ii) t
Let a body of mass m which is initially at rest undergoes one-dimensional motion under a constant force F with a constant acceleration a.
Acceleration (a) = \(\frac{F}{m}\) …………. (i)
Using equation of motion, υ = u + at
⇒ υ = 0 + \(\frac{F}{m}\).t …………. (∵ u = 0)
⇒ υ = \(\frac{F}{m}\)t …………… (ii)
Power delivered (P) = Fυ
Substituting the value from eq. (ii), we get
⇒ P = F × \(\frac{F}{m}\) × t
⇒ P = \(\frac{F^{2}}{m}\)t
Dividing and multiplying by m in R.H.S.
P = \(\frac{F^{2}}{m^{2}}\) × mt= a2mt [Using eq.(i)]
As mass m and acceleration a are constant.
∴ P ∝ t

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 10.
A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time t is proportional to
(i) \(t^{\frac{1}{2}}\)
(ii) t
(iii) \(t^{\frac{3}{2}}\)
(iv) t2
Solution:
(iii) \(t^{\frac{3}{2}}\)
Power is given by the relation:
P = Fυ
= maυ = mυ \(\frac{d v}{d t}\) = Constant (say,k )
υ dv = \(\frac{k}{m}\) dt
Integrating both sides:
\(\frac{v^{2}}{2}=\frac{k}{m}\)t
υ = \(\sqrt{\frac{2 k t}{m}}\)
For displacement x of the body, we have:
υ = \(\frac{d x}{d t}=\sqrt{\frac{2 k}{m}} t^{\frac{1}{2}}\)
dx = k’\(t^{\frac{1}{2}}\)dt
where, k’ = \(\sqrt{\frac{2 k}{3}}\) = New constant
On integrating both sides, we get:
x = \(\frac{2}{3} k^{\prime} t^{\frac{3}{2}}\)
x ∝ \(t^{\frac{3}{2}}\)

Question 11.
A body constrained to move along the z-axis of a coordinate system is subject to a constant force F given by F = -î + 2ĵ + 3k̂N
where î, ĵ, k̂ are unit vectors along the x-, y- and z-axis of the system respectively. What is the work done by this force in moving the body a distance of 4 m along the z-axis?
Solution:
Force exerted on the body, F = -î + 2ĵ + 3k̂N
Displacement, s = 4 k̂ m
Work done, W = F.s
= (-î + 2ĵ + 3k̂).(4k̂)
= 0 + 0 + 3 × 4 = 12 J
Hence, 12 J of work is done by the force on the body.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 12.
An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10 keV, and the second with 100 keV. Which is faster, the electron or the proton? Obtain the ratio of their speeds, (electron mass = 9.11 × 10-31 kg, proton mass = 1.67 × 10-27 kg, 1 eV = 1.60 × 10-19 J).
Solution:
Mass of the electron, me = 9.11 × 10-31 kg
Mass of the proton, mp =1.67 × 10-27 kg
Kinetic energy of the electron, EKe =10 keV = 104 eV
= 104 × 1.60 × 10-19
1.60 × 10-15 J
Kinetic energy of the proton, EKp = 100 keV = 105 eV = 1.60 × 10-14 J
For the velocity of an electron ve, its kinetic energy is given by the relation:
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 5

Question 13.
A rain drop of radius 2 mm falls from a height of500 m above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original height, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done hy the gravitational force on the drop in the first and second half of its journey? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is 10 ms-1?
Solution:
Radius of the rain drop, r = 2 mm = 2 × 10 -3 m
Volume of the rain drop, V = \(\frac{4}{3}\) πr3
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 m-3
Density of water, ρ = 103 kgm-3
Mass of the rain drop, m = ρV
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103
Gravitational, F = mg
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 9.8N
The work done by the gravitational force on the drop in the first half of its journey.
W1 = Fs
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3 )3 × 103 × 9.8 × 250
= 0.082 J

This amount of work is equal to the work done by the gravitational force on the drop in the second half of its journey, i. e., WII, = 0.082 J.
As per the law of conservation of energy, if no resistive force is present, then the total energy of the rain drop will remain the same.
∴ Total energy at the top:
ET = mgh + 0
= \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 × 9.8 × 500
= 0.164 J
Due to the presence of a resistive force, the drop hits the ground with a velocity of 10 m/s.
∴ Total energy at the ground:
Eg = \(\frac{1}{2}\) mυ2 + 0
= \(\frac{1}{2}\) × \(\frac{4}{3}\) × 3.14 × (2 × 10-3)3 × 103 × 9.8 × (10)2
= 1.675 × 10-3 J = 0.001675
∴ Resistive force = Eg – Et = 0.001675 – 0.164 = -0.162 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 14.
A molecule in a gas container hits a horizontal wall with speed 200 m s-1 and angle 30° with the normal, and rebounds with the same speed. Is momentum conserved in the collision? Is the collision elastic or inelastic?
Solution:
Yes; Collision is elastic
The momentum of the gas molecule remains conserved Whether the collision is elastic or inelastic.
The gas molecule moves with a velocity of 200 m/s and strikes the stationary wall of the container, rebounding with the same speed.
It shows that the rebound velocity of the wall remains zero. Hence, the total kinetic energy of the molecule remains conserved during the collision. The given collision is an example of an elastic collision.

Question 15.
A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3 in 15 min. If the tank is 40 m above the ground, and the efficiency of the pump is 30%, how much electric power is consumed by the pump?
Solution:
Volume of the tank, V = 30 m3
Time of operation, t = 15 min = 15 × 60 = 900 s
Height of the tank, h = 40 m
Efficiency of the pump, η = 30%
Density of water, ρ = 103 kg/m3
Mass of water, m = ρ V = 30 × 103 kg
Output power can be obtained as:
P0 = \(\frac{\text { Work done }}{\text { Time }}=\frac{m g h}{t}\)
= \(\frac{30 \times 10^{3} \times 9.8 \times 40}{900}\) = 13.067 × 103 W
For input power Pi efficiency η, is given by the relation :
η = \(\frac{P_{o}}{P_{i}}\) = 30%
Pi = \(\frac{13.067}{30}\) × 100 103
= 0.436 × 102 W = 43.6 kW

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 16.
Two identical ball bearings in contact with each other and resting on a frictionless table are hit head-on by another ball bearing of the same mass moving initially with a speed V. If the collision is elastic, which of the following figure is a possible result after collision?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 6
Solution:
It can be observed that the total momentum before and after collision in each case is constant.
For an elastic collision, the total kinetic energy of a system remains conserved before and after collision.
For mass of each ball bearing m, we can write:
Total kinetic energy of the system before collision:
= \(\frac{1}{2}\)mV2 + \(\frac{1}{2}\)(2m)0
= \(\frac{1}{2}\)mV2

Case (i)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\)m × 0 + \(\frac{1}{2}\)(2m) (\(\frac{V}{2}\))2
= \(\frac{1}{4}\)mV2
Hence, the kinetic energy of the system is not conserved in case (i).

Case (ii)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\) (2m) × 0 + \(\frac{1}{2}\)mV2
= \(\frac{1}{2}\) mV2
Hence, the kinetic energy of the system is conserved in case (ii).

Case (iii)
Total kinetic energy of the system after collision:
= \(\frac{1}{2}\)(3m) (\(\frac{V}{3}\))2
= \(\frac{1}{6}\) mV2
Hence, the kinetic energy of the system is not conserved in case (iii).

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 17.
The bob A of a pendulum released from 30° to the vertical hits another hob B of the same mass at rest on a table as shown in’ figure given below. How high does the bob A rise after the collision? Neglect the size of the bobs and assume the collision to be elastic.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 7
Solution:
Bob A will not rise at all
In an elastic collision between two equal masses in which one is stationary, while the other is moving with some velocity, the stationary mass acquires the same velocity, while the moving mass immediately comes to rest after collision. In this case, a complete transfer of momentum takes place from the moving mass to the stationary mass. Hence, bob A of mass m, after colliding with bob B of equal mass, will come to rest, while bob B will move with the velocity of bob A at the instant of collision.

Question 18.
The bob of a pendulum is released from a horizontal position. If the length of the pendulum is 1.5 m, what is the speed with which the bob arrives at the lowermost-point, given that it dissipated 5% of its initial energy against air resistance?
Solution:
Length of the pendulum, l = 1.5 m
Mass of the bob = m
Energy dissipated = 5%
According to the law of conservation of energy, the total energy of the system remains constant.

At the horizontal position:
Potential energy of the bob, EP = mgl
Kinetic energy of the bob, EK = 0
Total energy = mgl …………. (i)

At the lowermost point (mean position):
Potential energy of the bob, EP = 0
Kinetic energy of the bob, EK = \(\frac{1}{2}\)mυ2
Total energy, Ex = \(\frac{1}{2}\)mυ2 ………….. (ii)
As the bob moves from the horizontal position to the lowermost point, 5% of its energy gets dissipated.
The total energy at the lowermost point is equal to 95% of the total energy at the horizontal point, i. e.,
\(\frac{1}{2}\)mυ2 = \(\frac{95}{100}\) × mgl
υ = \(\sqrt{\frac{2 \times 95 \times 1.5 \times 9.8}{100}}\) = 5.28 m/s

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 19.
A trolley of mass 300 kg carrying a sandbag of 25 kg is moving uniformly with a speed of 27 km/h on a frictionless track. After a while, sand starts leaking out of ahole on the floor of the trolley at the rate of 0.05 kg s-1 . What is the speed of the trolley after the entire sand bag is empty?
Solution:
The sand bag is placed on a trolley that is moving with a uniform speed of 27 km/h. The external forces acting on the system of the sand bag and the trolley is zero. When the sand starts leaking from the bag, there will be no change in the velocity of the trolley. This is because the leaking action does not produce any external force on the system. This is in accordance with Newton’s first law of motion. Hence, die speed of the trolley will remain 27 km/h.

Question 20.
A body of mass 0.5 kg travels in a straight line with velocity υ = ax3/2 where a = 5 m-1/2s-1. What is the work done by the net force during its displacement from x = 0 to x = 2 m?
Solution:
Mass of the body, m = 0.5 kg
Velocity of the body is governed by the equation, υ = a \(x^{\frac{3}{2}}\) where,
a = 5m-1/2s-1
Initial velocity, u (at x = 0) = 0
Final velocity, υ (at x = 2 m) = 5 × (2)3/2 m/s = 10√2 m/s
Work done, W = Change in kinetic energy
= \(\frac{1}{2}\)m(υ2 – u2)
= \(\frac{1}{2}\) × 0.5[(10√2)2 – (0)2]
= \(\frac{1}{2}\) × 0.5 × 10 × 10 × 2
= 50 J

Question 21.
The blades of a windmill sweep out a circle of area A. (a) If the wind flows at a velocity v perpendicular to the circle, what is the mass of the air passing through it in time t? (b) What is the kinetic energy of the air? (c) Assume that the windmill converts 25% of the wind’s energy into electrical energy, and that A = 30 m2, υ = 36km/h and the density of air is 1.2 kg m-3. What is the electrical power produced?
Solution:
(a) Area of the circle swept by the windmill = A
Velocity of the wind = υ
Density of air = ρ
Volume of the wind flowing through the windmill per sec = Aυ
Mass of the wind flowing through the windmill per sec = ρ Aυ
Mass m, of the wind flowing through the windmill in time t = ρ A υ t

(b) Kinetic energy of air = \(\frac{1}{2}\) mυ2
= \(\frac{1}{2}\) (ρAυt)v2 = \(\frac{1}{2}\)ρ Aυ3t

(c) Area of the circle swept by the windmill, A = 30 m2
Velocity of the wind, υ =36 km/h = 36 × \(\frac{5}{18}\) m/s
= 10 m/s [1 km/s = \(\frac{5}{18}\) m/s]
Density of air, ρ = 1.2 kg m-3
Electric energy produced = 25% of the wind energy
= \(\frac{25}{100}\) ×Kinetic energy of air
= \(\frac{1}{8}\)ρAυ3t
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 8
\(\) = \(\frac{1}{8}\)ρAυ3
= \(\frac{1}{8}\) × 1.2 × 30 × (10)3
= 4.5 × 103 W = 4.5 kW

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 22.
A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a height of 0.5 m each time. Assume that the potential energy lost each time she lowers the mass is dissipated, (a) How much work does she do against the gravitational force? (b) Fat supplies 3.8 × 107 J of energy per kilogram which is converted to mechanical energy with a 20% efficiency rate. How much fat will the dieter use up?
Solution:
(a) Mass of the weight, m = 10 kg
Height to which the person lifts the weight, h = 0.5
m Number of times the weight is lifted, n = 1000
∴ Work done against gravitational force:
= n(mgh)
=1000 × 10 × 9.8 × 0.5
= 49 × 103 J = 49 kJ

(b) Energy equivalent of 1 kg of fat = 3.8 × 107 J
Efficiency rate = 20%
Mechanical energy supplied by the person’s body
= \(\frac{20}{100}\) × 3.8 × 107 J
= \(\frac{1}{5}\) × 3.8 × 107 J 5
Equivalent mass of fat lost by the dieter
= \(\frac{1}{\frac{1}{5} \times 3.8 \times 10^{7}}\) × 49 × 3
= \(\frac{245}{3.8}\)× 3.8 × 107
= × 10-4
= 6.45 × 10-3 kg

Question 23.
A family uses 8 kW of power, (a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per square meter. If 20% of this energy can be converted to useful electrical energy, how large an area is needed to supply 8 kW? (b) Compare this area to that of the roof of a typical house.
Solution:
(a) Power used by the family, P = 8 kW = 8 × 103 W
Solar energy received per square meter = 200 W
Efficiency of conversion from solar to electrical energy = 20%
Area required to generate the desired electricity = A
As per the information given in the question, we have
8 × 103 = 20% × (A × 200)
= \(\frac{20}{100}\) × A × 200
> A = \(\frac{8 \times 10^{3}}{40}\) = 200m2

(b) In order to compare this area to that of the roof of a typical house, let ‘a’ be the side of the roof
∴ area of roof =a × a = a2
Thus a2 = 200 m2
or a = \(\sqrt{200 \mathrm{~m}^{2}}\) = 14.14 m
∴ area of roof = 14.14 × 14.14 m2
Thus 200 m2 is comparable to the roof of a typical house of dimensions 14.14 m × 14.14 m = 14 m × 14 m.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 24.
A bullet of mass 0.012 kg and horizontal speed 70 ms-1 strikes a block of wood of mass 0.4 kg and instantly comes to rest with respect to the block. The block is suspended from the ceiling by means of thin wires. Calculate the height to which the block rises. Also, estimate the amount of heat produced in the block.
Solution:
Mass of the bullet, m = 0.012 kg
Initial speed of the bullet, ub = 70 m/s
Mass of the wooden block, M = 0.4 kg
Initial speed of the wooden block, uB = 0
Final speed of the system of the bullet and the block = υ
Applying the law of conservation of momentum,
mub +MUB = (m + M)υ
012 × 70 + 0.4 × 0 = (0.012 + 0.4)υ
∴ υ = \(\frac{0.84}{0.412}\) = 2.04 m/s

For the system of the bullet and the wooden block,
Mass of the system, m’ = 0.412 kg
Velocity of the system = 2.04 m/s
Height up to which the system rises = h
Applying the law of conservation of energy to this system,
Potential energy at the highest point
= Kinetic energy at the lowest point
m’ gh = \(\frac{1}{2}\)m’ υ2
h = \(\frac{1}{2}\)(\(\frac{v^{2}}{g}\))
= \(\frac{1}{2}\) (\(\frac{(2.04)^{2}}{9.8}\)) = 0.2123m
The wooden block will rise to a height of 0.2123 m.
Heat produced = Kinetic energy of the bullet
– Kinetic energy of the system
= \(\frac{1}{2}\) mub– \(\frac{1}{2}\)m’ υ2
= \(\frac{1}{2}\) × 0.012 × (70)2 – \(\frac{1}{2}\) × 0.412 × (2.04)2
= 29.4 – 0.857 = 28.54 J

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 25.
Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track (see figure). Will the stones reach the bottom at the same time? Will they reach there with the same speed? Explain. Given θ1 = 30°, θ2 = 60°and h = 10m, what are the speeds and times taken by the two stones?
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 9
Solution:
No; the stone moving down the steep plane will reach the bottom first Yes; the stones will reach the bottom with the same speed The given situation can be shown as in the following figure:
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 10
Here, the initial height (AD) for both the stones is the same (h).
Hence, both will have the same potential energy at point A.
As per the law of conservation of energy, the kinetic energy of the stones at points B and C will also be the same, i. e.,
\(\frac{1}{2}\) mυ12 = \(\frac{1}{2}\)mυ22
υ1 = υ1 = υ, say
where,
m = Mass of each stone
υ = Speed of each stone at points B and C
Hence, both stones will reach the bottom with the same speed, υ.

For stone I: Net force acting on this stone is given by:
Fnet = ma1 = mgsinθ1
a1 = gsinθ1

For stone II: a2 = gsinθ2
∵ θ2 > θ1
∴ sinθ2 > sinθ1
∴ a2 > a1
Using the first equation of motion, the time of slide can be obtained as:
υ = u + at
∴ t = \(\frac{v}{a}\) (∵ u = 0)
For stone I: t1 = \(\frac{v}{a_{1}}\)
For stone II: t2 = \(\frac{v}{a_{2}}\)
∵ a2 > a1
∴ t2 < t1
Hence, the stone moving down the steep plane will reach the bottom first. The speed (υ) of each stone at points B and C is given by the relation obtained from the law of conservation of energy.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 11

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 26.
A1 kg block situated on a rough incline is connected to a spring of spring constant 100 Nm-1 as shown in figure given below. The block is released from rest with the spring in the unstretched position. The block moves 10 cm down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has a negligible mass and the pulley is frictionless.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 12
Solution:
Mass of the block, m = 1 kg
Spring constant, k = 100 N m-1
Displacement in the block, x = 10 cm = 0.1 m
The given situation can be shown as in the following figure.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 13
At equilibrium:
Normal reaction, R = mg cos 37°
Frictional force, f = μR = p mg cos 37°
where, μ is the coefficient of friction
Net force acting on the block = mg sin 3 7° – f
= mgsin37° – μmgcos37°
= mg (sin37° – μcos37°)
At equilibrium, the work done by the block is equal to the potential energy of the spring, i.e.,
mg (sin37° – μcos37°) x = \(\frac{1}{2}\)kx 2
1 × 9.8 (sin 37° – μcos37°) = \(\frac{1}{2}\) × 100 × 0.1
0.6018 – μ × 0.7986 = 0.5102
0.7986 μ = 0.6018 – 0.5102 = 0.0916
∴ μ = \(\frac{0.0916}{0.7986}\) = 0.115

Question 27.
A bolt of mass 0.3 kg falls from the ceiling of an elevator moving down with an uniform speed of 7 m-1. It hits the floor of the elevator (length of the elevator = 3m) and does not rebound. What is the heat produced by the impact? Would your answer be different if the elevator were stationary?
Solution:
Mass of the bolt, m = 0.3 kg
Speed of the elevator = 7 m/s
Height, h = 3 m
Since the relative velocity of the bolt with respect to the lift is zero, at the time of impact, potential energy gets converted into heat energy.
Heat produced = Loss of potential energy
= mgh = 0.3 × 9.8 × 3 = 8.82 J
The heat produced will remain the same even if the lift is stationary. This is because of the fact that the relative velocity of the bolt with respect to the lift will remain zero.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 28.
A trolley of mass 200 kg moves with a uniform speed of 36 km/h on a frictionless track. A child of mass 20 kg runs on the trolley from one end to the other (10 m away) with a speed of 4 m s-1 relative to the trolley in a direction opposite to the its motion, and jumps out of the trolley. What is the final speed of the trolley? How much has the trolley moved from the time the child begins to run?
Solution:
Mass of the trolley, M = 200 kg
Speed of the trolley, υ = 36 km/h = 36 × \(\frac{5}{18}\)m/s = 10 m/s
Mass of the boy, m = 20 kg
Initial momentum of the system of the boy and the trolley
= (M + m)υ
= (200 + 20) × 10
= 2200 kg-m/s
Let v’ be the final velocity of the trolley with respect to the ground.
Final velocity of the boy with respect to the ground = υ’ – 4
Final momentum = Mυ’ + m(υ’ – 4)
= 200 υ’ + 20υ’ – 80
= 220 υ’ – 80
As per the law of conservation of momentum,
Initial momentum = Final momentum
2200 =220 υ’ – 80
∴ υ’ = \(\frac{2280}{220}\) = 10.36 m/s
Length of the trolley, l = 10 m
Speed of the boy, υ” = 4 m/s
Time taken by the boy to run, t = \(\frac{10}{4}\) = 2.5 s
∴ Distance moved by the trolley = υ’ × t= 10.36 × 2.5 = 25.9 m

Question 29.
Which of the following potential energy curves in the given figure cannot possibly describe the elastic collision of two billiard balls? Here r is the distance between centres of the balls.
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 14
Solution:
(i), (ii), (iii), (iv), and (vi)
The potential energy of a system of two masses is inversely proportional to the separation between them. In the given case, the potential energy of the system of the two balls will decrease as they come closer to each other. It will become zero [i.e., V (r) = 0] when the two balls touch each other, i.e., at r = 2R, where R is the radius of each billiard ball. The potential energy curves given in figures (i), (ii), (iii), (iv), and (vi) do not satisfy these two conditions. Hence, they do not describe the elastic collisions between them.

PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power

Question 30.
Consider the decay of a free neutron at rest: n → p + e. Show that the two-body decay of this type must necessarily give an electron of fixed energy and, therefore, cannot account for the observed continuous energy distribution in the β-decay of a neutron or a nucleus (see figure).
PSEB 11th Class Physics Solutions Chapter 6 Work, Energy and Power 15
[Note: The simple result of this exercise was one among the several arguments advanced by W. Pauli to predict the existence of a third particle in the decay products of P-decay. This particle is known as
neutrino. We now know that it is a particle of intrinsic spin \(\frac{1}{2}\) (like e, p or n), but is neutral, and either massless or having an extremely small mass
(compared to the mass of electron) and which interacts very weakly with matter. The correct decay process of neutron is: n → p + e + υ]
Solution:
The decay process of free neutron at rest is given as:
n → p + e
From Einstein’s mass-energy relation, we have the energy of electron as
Δ𝜏 mc2
where,
Δ𝜏 m = Mass defect
= Mass of neutron – (Mass of proton + Mass of electron)
c = Speed of light
Δ𝜏 m and c are constants. Hence, the given two-body decay is unable to explain the continuous energy distribution in the p-decay of a neutron or a nucleus. The presence of neutrino v on the LHS of the decay correctly explains the continuous energy distribution.
Here, Δ𝜏 m= mass of neutron – (mass of proton + mass of electron)
= 1.6747 × 10-24 -(1.6724 × 10-24 + 9.11 × 10-28)
= (1.6747 – 1.6733) × 10-24
= 0.0014 × 10-24 gms ‘
∴ E = 0.0014 × 10-24 × (3 × 1010)2 ergs
= 0.0126 × 10-4 ergs
= [Latex]\frac{0.0126 \times 10^{-4}}{1.6 \times 10^{-12}}[/Latex]
( ∵ 1 eV = 1.6 × 10-19 J = 1.6 × 10-19 × 107 ergs)
= 0.007875 × 10 8 eV
= 0.7875 × 106 eV
= 0.79 MeV

A positron has the same mass as an electron but an opposite charge of+e. When an electron and a positron come close to each other, they destroy each other. Their masses, are converted into energy according to Einstein’s relation and the energy so obtained is released in the form of y-rays and is given by
E’ = mc2 = 2 × 9.1 × 10-31 kgx (3 × 108 ms-1)2
= 1.638 × 10-13 J
= \(\frac{1.638 \times 10^{-13}}{1.6 \times 10^{-13}}\) MeV
= 1.02MeV (∵1 MeV = 1.6 × 10-13 eV)
= Minimum energy a photon must possess for pair production.

Alternate method
Decay of a free neutron at rest,
n → p + e
Let Δ m be the mass defect during this process.
∴ Mass defect (Δ m) = (Mass of neutron) – (Mass of proton and electron) This mass defect is fixed and hence electron of fixed energy should be produced. Therefore, two-body decay of this type cannot explain the observed continuous energy distribution in the (3-decay of a neutron in a nucleus.