Punjab State Board PSEB 12th Class Maths Book Solutions Chapter 1 Relations and Functions Miscellaneous Exercise Textbook Exercise Questions and Answers.
PSEB Solutions for Class 12 Maths Chapter 1 Relations and Functions Miscellaneous Exercise
Question 1.
Let f: R → R be defined as f(x) = 10x + 7. Find the function g: R → R such that gof = fog = IR.
Solution.
It is given that f: R → R is defined as f(x) = 10x + 7.
One – one :
Let f(x) = f(y), where x, y ∈ R.
⇒ 10x + 7 = 10y + 7
⇒ x = y
∴ f is a one-one function.
Onto :
For y ∈ R, let y = 10x + 7.
⇒ x = \(\frac{y-7}{10}\) ∈ R
Therefore, for any y ∈ R, there exists x = \(\frac{y-7}{10}\) ∈ R such that
f(x) = f(\(\frac{y-7}{10}\))
= 10(\(\frac{y-7}{10}\)) + 7
= y – 7 + 7 = y
∴ f is onto.
Therefore f is one-one and onto.
Thus f is an invertible function.
Let us define g : R → R as g(y) = \(\frac{y-7}{10}\)
Now, we have
gof(x) = g(f(x)) = g(10x + 7)
= \(\frac{(10 x+7)-7}{10}=\frac{10 x}{10}\) = x
And, fog(y) = f(g(y))
= f(\(\frac{y-7}{10}\))
= 10(\(\frac{y-7}{10}\)) + 7
= y – 7 + 7 = y
∴ gof = IR and fog = IR
Hence, the required functiong:R → R is defined as g(y) = \(\frac{y-7}{10}\)
Question 2.
Let f: W → W be defined as f(n) = n – 1, if n is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
Solution.
It is given that
f: W → W is defined as f(n) =
One-one :
Let f(n) = f(m)
It can be observed that if n is odd and m is even, then we will have
n – 1 = m + 1
⇒ n – m = 2
However, this is impossible.
Similarly, the possibility of n being even and m being odd can also ignored under a similar argument.
∴ Both n and m must be either odd or even.
Now, if both n and m are odd, then we have
f(n) = f(m) ⇒ n – 1 = m – 1 ⇒ n = m
Again, if both n and m are even , then we have
f(n) = f(m) ⇒ n + 1 = m+1 ⇒ n = m
∴ f is one – one.
Onto :
It is clear that any odd number 2r + 1 in co-domain W is the image of 2r in domain W and any even number 2r in co-domain W is the image of 2r + 1 in domain W.
∴ f is onto.
Hence, f is an invertible function.
Let us define g : W → W as
g(m) =
Now, when n is odd
gof(n) = g(f(n)) = g(n – 1) = n – 1 + 1 = n
and, when n is even
gof(n) = g(f(n)) = g(n + 1) = n + 1 – 1 = n
Similarly, when m is odd
fog(m) = f(g(m)) = f(m – 1) = m – 1 + 1 = m
and when m is even
fog(m) = f(g(m)) = f(m + 1) = m + 1 – 1 = m
∴ gof = IW and fog = IW
Thus, f is invertible and the inverse of f is given by f-1 = g, which is the same as f.
Hence, the inverse of f is itself.
Question 3.
If f: R → R is defined by f(x) = x2 – 3x + 2, find f(f(x)).
Solution.
It is given that f: R → R is defined as f(x) = x2 – 3x + 2.
f(f(x)) = f(x2 – 3x + 2)
= (x2 – 3x + 2)2 – 3(x2 -3x + 2) + 2
= x4 + 9x2 + 4 – 6x3 – 12x + 4x2 – 3x2 + 9x – 6 + 2
= x4 – 6x3 + 10x2 – 3x.
Question 4.
Show that the function f: R → {x ∈ R: – 1 < x < 1} defined by f(x) = \(\frac{x}{1+|x|}\) ∈ R is one-one and onto function.
Solution.
It is given that f: R → {x ∈ R: – 1 < x < 1} is defined as f(x) = \(\frac{x}{1+|x|}\), x ∈ R.
Suppose f(x) = f(y), where x,y ∈ R ⇒ \(\frac{x}{1+|x|}=\frac{y}{1+|y|}\)
It can be observed that if x is positive and y is negative, then we have \(\frac{x}{1+x}=\frac{y}{1-y}\)
⇒ 2xy = x – y
Since x is positive and y is negative, then x > y ⇒ x – y > 0
But, 2xy is negative.
Then, 2xy ≠ x – y.
Thus, the case of x being positive and y being negative can be ruled out.
Under a similar argument, x being negative and y being positive can also be ruled out.
∴ x and y have to be either positive or negative.
When x and y are both positive, we have x y
f(x) = f(y)
⇒ \(\frac{x}{1+x}=\frac{y}{1+y}\)
⇒ x + xy = y + xy
⇒ x = y
When x and y are both negative, we have
f(x) = f(y)
⇒ \(\frac{x}{1-x}=\frac{y}{1-y}\)
⇒ x – xy = y – yx
⇒ x = y
∴ f is one-one.
Now, let y ∈ R such that – 1 < y < 1.
If y is negative, then there exists x = \(\frac{y}{1+y}\) ∈ R such that
f(x) = f(\(\frac{y}{1+y}\))
= \(\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}=\frac{y}{1+y-y}\) = y
If y is positive, then there exists x = \(\frac{y}{1-y}\) ∈ R such that
f(x) = \(f\left(\frac{y}{1-y}\right)=\frac{\left(\frac{y}{1-y}\right)}{1+\left(\frac{y}{1-y}\right)}\)
= \(\frac{\frac{y}{1-y}}{1+\left(\frac{y}{1-y}\right)}=\frac{y}{1-y+y}\) = y
∴ f is onto.
Hence, f is one-one and onto.
Question 5.
Show that the function f: R → R given by f(x) = x3 in injective.
Solution.
f: R → R is given as f(x) = x3.
Suppose f(x) = f(y), where x, y ∈ R.
⇒ x3 = y3 …………(i)
Now, we need to show that x = y
Suppose x * y, their cubes will also not be equal.
⇒ x3 ≠ y3
However, this will be a contradiction to Eq. (i).
∴ x = y
Hence, f is injective.
c
Question 6.
Give examples of two functions f: N → Z and g: Z → Z such that gof is injective but g is not injective.
[Hint: consider f(x) x and g(x) = |x|].
Solution.
Define f: N → Z as f(x) – x and g: Z → Z as g(x) =|x|
We first show that g is not injective.
It can be observed that
g(- 1) = |- 1|= 1; g(1) = |1|= 1
∴ g(- 1) = g(1), but – 1 ≠ 1.
∴ g is not injective.
Now, gof: N → Z is defined as gof(x) = g(f(x)) = g(x) =|x|.
Let x, y ∈ N such that gof(x) – gof(y).
⇒ |x| = |y|
Since x and y ∈ N, both are positive.
∴ |x |= |y |=> x = y
Hence, gof is injective.
Question 7.
Give examples of two functions f: N → N and g: N → N such that gof is onto but f is not onto.
[Hint: consider f(x) = x + 1 and g(x) = i]
Solution.
Define f: N → N by f(x) = x +1
and, g: N → N by g(x) =
We first show that f is not onto.
For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.
∴ f is not onto.
Now, gof: N → N is defined by,
gof(x) = g(f(x)) = g(x + 1) = (x + 1) – 1 = x [∵ x ∈ N ⇒ (x + 1) > 1]
Then, it is clear that for y ∈ N, there exists x = y ∈ N such that gof(x) = y.
Hence, gof is onto.
Question 8.
Given a non-empty set X, consider P(X) which is the set of all subsets of X.
Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A c B. Is R an equivalence relation on P(X)? Justify your answer.
Solution.
Since every set is a subset of itself, ARA for all A ∈ P(X).
∴ R is reflexive.
Let ARB ⇒ A ⊂ B.
This cannot be implied to B ⊂ A.
For instance, if A = {1, 2} and B = {1, 2,3}, then it cannot be implied that B is related to A.
∴ R is not symmetric.
Further, if ARB and BRC, then A c B and B c C.
⇒ A ⊂ C
⇒ ARC
R is transitive.
Hence, R is not an equivalence relation since it is not symmetric.
Question 9.
Given a non-empty set X, consider the binary operation *: P(X) × P(X) P(X) given by A * B = A ∩ B ∀ A, B in P(X) where P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Solution.
It is given that * : P(X) × P(X) → P(X) is defined as A * B = A ∩ B ∀ A, B ∈ P(X).
We know that A * X = A ∩ X = A = X ∩ A ∀ A ∈ P(X).
⇒ A * X = A = X * A ∀ A ∈ P (X)
Thus, X is the identity element for the given binary operation*.
Now, an element A ∈ P(X) is invertible if there exists B ∈ P(x) such that
A * B = X = B * A. (As X is the identity element)
i.e., A ∩ B = X = B ∩ A
This case in possible only when A = X = B.
Thus, X is the only invertible element in P(X) with respect to the given operation*.
Hence, the given result is proved.
Question 10.
Find the number of all onto functions from the set {1, 2, 3, n} to itself.
Solution.
Onto functions from the set {1, 2, 3, …, n} to itself is simply a permutation on n symbols 1, 2, …, n.
Thus, the total number of onto maps from {1, 2, 3,…, n} to itself is the same as the total number of permutations on symbols 1, 2,…, n, which is n!.
Question 11.
Let S = {a, b, c} and T = {1,2, 3}. Find F-1 of the following functions F from S to T, if it exists.
(i) F = {(o, 3), (6, 2), (c, 1)}
(ii) F = {(a, 2), (6, 1), (c, 1)}
Solution.
Given, S = {a, b, c}, and T = {1, 2, 3}
F: S → T is defined as :
F = {(a, 3), (b, 2), (c, 1)}
⇒ f(a) = 3, F(b) = 2, F(c) = 1
Therefore, F-1 : T → S is given by
F-1 = {(3, a), (2, b), (1, c)}
(ii) F: S → T is defined as
F = {(a, 2), (b, 1), (c, 1)}
Since F (b) = F (c) = 1, F is not one-one.
Hence, F is not invertible i. e., F-1 does not exist.
Question 12.
Consider the binary operations * : R × R → R and o: R × R → R defined as a * b = | a – b| and a o b = a, ∀ a, b ∈ R. Show that * is commutative hut not associative, o is associative but not commutative. Further, show that ∀ a, b, c ∈ R, a* (b o c) = (a * b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Solution.
It is given that *: R × R R and o: R × R → R is defined as a * b = |a – b| and a o b = a ∀ a, b ∈ R.
For a, b ∈ R, we have
a * b = |a – b|
b * a = |b – a| = |- (a – b)|= |a – b|
∴ a * b = b * a
Therefore, the operation * is commutative..
It can be observed that
(1 * 2) * 3 = (|1 – 2|) * 3 = 1 * 3 = |1 – 3|= 2
1 * (2 * 3) = 1 * (|2 – 3|) = 1 * 1 =|1 – 1 |= 0
∴ (1 * 2) * 3 ≠ 1 * (2 * 3) (where 1, 2, 3 ∈ R)
Therefore, the operation * is not associative.
Now, consider the operation o
It can be observed that 1 o 2 = 1 and 2 o 1 = 2.
∴ 1 o 2 ≠ 2 o 1 where 1, 2 ∈ R
Therefore, the operation o is not commutative.
Let a, b, c ∈ R. Then, we have
(a o b) o c = a o c = a
a o (b o c) = a o b = a
⇒ (a o b) o c = a o (b o c)
Therefore, the operation o is associative.
Now, let a, b, c ∈ R, then we have
a * (b o c) = a * b = |a – b|
(a * b) o (a * c) = (|a – b|) o (|a – c|) = |a – b|
Hence a * (b o c) = (a * b) o (a * c)
Now, 1 o(2 * 3) = 1 o (|2 – 3|) = 1 o 1 = 1
(1 o 2) * (1 o 3) = 1 * 1 = |1 – 1|= 0
1 o (2 * 3) ≠ (1 o 2) * (1 o 3)
where 1, 2, 3 ∈ R Therefore, the operation o does not distribute over *.
Question 13.
Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B – (A – B) ∪ (B – A), ∀ A, B ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A-1 = A.
[Hint: (A – Φ) ∪ (Φ – A) = A and (A – A) ∪ (A – A) = A * A = Φ]
Solution.
It is given that *: P(X) × P(X) → P(X) is defined as
A * B = (A – B) ∪ (B – A) ∀ A, B, ∈ P(X).
Let A ∈ P(X). Then, we have
A * (Φ) = (A – Φ) ∪ (Φ – A) = A ∪ Φ = A
Φ * A = (Φ – A) ∪ (A – Φ) = Φ ∪ A = A
A * Φ = A = Φ * A ∀ A ∈ P(X)
Thus, Φ is the identity element for the given operation *.
Now, an element A s P(X) will be invertible if there exists B ∈ P(X) such that
A * B = Φ = B * A. (As Φ is the identity element)
Now, we observed that
A * A = (A – A) ∪ (A – A) = Φ ∪ Φ = Φ ∀ A ∈ P(X).
Hence, all the elements A of P(X) are invertible with A-1 = A.
Question 14.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5) as
a * b =
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 – a being the inverse of a.
Solution.
(i) e is the identity element if a * e = e * a = a
a * 0 = a + 0, 0 * a = 0 + a = a
⇒ a * 0 = 0 * a = a
∴ 0 is the identity of the operation.
(ii) b is the inverse of a if a * b = b * a = e
Now a * (6 – a) = a + (6 – a) – 6 = 0
(6 – a) * a = (6 – a) + a – 6 = 0
Hence, each element of a of the set is invertible with inverse.
Question 15.
Let A = {-1, 0, 1, 2}, B = {-4,-2, 0,2} and f, g: A → B be functions defined by f(x) = x2 – x, x ∈ A and g(x) = 2|x – \(\frac{1}{2}\)| – 1, x ∈ A. Are f and g equal? Justify your answer.
[Hint: One may not be that two functions f: A → B and g: A → B
such that f(a) = g(a) ∀ a ∈ A, are called equal functions.]
Solution.
It is given that A = {- 1,0,1, 2}, B = {- 4, – 2, 0, 2).
Also, it is given that f, g: A → B are defined by f(x) = x2 – x, x ∈ A and
g(x) = 2 |x – \(\frac{1}{2}\)| – 1, x ∈ A
It is observed that
f(- 1) = (- 1)2 – (- 1) = 1 + 1 = 2
and g(- 1) = 2|(- 1) – \(\frac{1}{2}\)| – 1
= 2(\(\frac{3}{2}\)) – 1 = 3 – 1 = 2
⇒ f(- 1) = g(- 1)
⇒ f(0) = (0)2 – 0 = 0
and g(0) = 2|0 – \(\frac{1}{2}\)|
= 2(\(\frac{3}{2}\)) – 1 = 1 – 1 = 0
⇒ f(0) = g(0)
f(1) = (1)2 – 1 = 1 – 1 = 0
and g(1)= 2|1 – \(\frac{1}{2}\)|
= 2(\(\frac{1}{2}\)) – 1 = 1 – 1 = o
⇒ f(1) = g(1)
f(2) = (2)2 – 2 = 4 – 2 = 2
and g(2) = 2 |2 – \(\frac{1}{2}\)|
= 2(\(\frac{3}{2}\)) – 1 = 3 – 1 = 2
⇒ f(2) = g(2)
∴ f(a) = g(a) ∀ a ∈ A
Hence, the functions f and g are equal.
Question 16.
Let A = {1, 2, 3}. Then, number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive, is
(A) 1
(B) 2
(C) 3
(D) 4
Solution.
This is because relation R is reflexive as (1, 1), (2, 2), (3, 3) ∈ R.
Relation R is symmetric since (1, 2), (2 ,1) ∈ R and (1, 3), (3, 1) ∈ R.
But relationR is not transitive as (3, 1), (1, 2) ∈ R but (3, 2) ∈ R.
Now, if we add any one of the two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.
Hence, the total number of desired relation is one.
Thus, the correct option is (A).
Question 17.
Let A = {1, 2, 3}. Then, number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C)3
(D) 4
Solution.
It is given that A = {1, 2, 3}
The smallest equivalence relation containing (1, 2) is given by,
R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
Now, we are left with only four pairs i. e., (2, 3), (3, 2), (1, 3), and (3, 1).
If we add any one pair [say (2, 3)] to R1 then for symmetry we must add (3, 2). Also, for transitivity, we are required to add (1, 3) and (3,1). Hence, the only equivalence relation (bigger than R1) is the universal relation.
This shows that the total number of equivalence relations containing (1, 2) is two. The correct option is (B).
Question 18.
Let f: R → R be the signum function defined as
f(x) =
and g: R → R be the greatest integer function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?
Solution.
It is given that
f: R → R is defined as f(x) =
Also, g: R → R is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x .
Now, let x ∈ (0, 1]
Then, we have
[x] = 1, if x = 1 and [x] = 0 if 0 < x < 1. ∴ fog(x) = f (g(x)) = f([x]) = gof(x) = g(f(x))= g(1) [∵ x > 0]
= [1] = 1 .
Thus, when x ∈ (0, 1), we have fog(x) = 0 and gof(x) = 1.
But fog (1) ≠ gof (1)
Hence, fog and gof do not coincide in (0,1].
Question 19.
Number of binary operations on the set {a, b} are (A) 10 (B) 16 (C) 20 (D) 8
Solution.
A binary operation * on {a, b} is a function from {a, b} × {a, b} → {a, b} i. e.,* is a function from {(a, a), (a, b), (b, a), (b, b)} → {a, b}.
Hence, the total number of binary operations on the set {a, b} is 24 i.e. 16.
Thus, the correct option is (B).