PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 15 Polymers Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 15 Polymers

PSEB 12th Class Chemistry Guide Polymers InText Questions and Answers

Question 1.
Explain the terms polymer and monomer.
Answer:

  • Polymer is a high molecular mass macromolecule consisting of repeating structural units derived from monomers.
  • A monomer is a simple molecule capable of undergoing polymerisation and leading to the formation of the corresponding polymer.

Question 2.
What are natural and synthetic polymers? Give two examples of each type.
Answer:

  1. Natural polymers are high molecular mass macromolecules and are found in plants and animals. For example, proteins and nucleic acids,
  2. Synthetic polymers are man-made high molecular mass macromolecules. These include synthetic plastics, fibres and rubbers. For example, polythene and dacron.

Question 3.
Distinguish between the terms homopolymer and copolymer and give an example of each.
Answer:
Homopolymer: Polymers whose repeating structural units are derived from only one type of monomer units are called homopolymers. For example, polythene, PAN, Teflon, nylon-6, etc.

Copolymer: Polymers whose repeating structural units are derived from two or more types of monomer molecules are called copolymers. For example, Buna-S, Buna-N, nylon-6,6 polyester, bakelite, etc.

Question 4.
How do you explain the functionality of a monomer?
Answer:
The functionality of a monomer is the number of binding sites in a molecule. For example, the functionality of ethene, propene, styrene, acrylonitrile is one and that of 1, 3-butadiene, adipic acid, terephthalic acid, hexamethylenediamine is two.

Question 5.
Define the term polymerisation.
Answer:
The polymerisation is a process of formation of a high molecular mass polymer from one or more monomers by linking together a large number of repeating structural units through covalent bonds.

Question 6.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 1
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 2 is a homopolymer because it is obtained from a single monomer unit, NH2-CHR-COOH.

Question 7.
In which classes, the polymers are classified on the basis of molecular forces?
Answer:
On the basis of molecular forces of attraction polymers are classified into the following classes :

  • Elastomers
  • Fibres
  • Thermoplastic polymers and
  • Thermosetting polymers.

Question 8.
How can you differentiate between addition and condensation polymerisation?
Answer:
(i) Addition polymerisation: In this, polymers are formed by the repeated addition of monomers molecules possessing double or triple bonds.
For example :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 3

(ii) Condensation polymerisation: It is a process in which two or more bi-functional molecules undergo a series of condensation reactions with the elimination of some simple molecules and leading to the formation of polymers.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 4

Question 9.
Explain the term copolymerisation and give two examples.
Answer:
When a mixture containing more than one monomeric species is allowed to polymerise, the product obtained is called a copolymer and the process is called copolymerisation. For example, Buna-S, a copolymer of 1,3-butadiene and styrene and Buna-N, a copolymer of 1,3-butadiene and acrylonitrile.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 10.
Write the free radical mechanism for the polymerisation of ethene.
Answer:
The mechanism of chain growth polymerisation of ethene of free radical mechanism is given below :
Step I. Chain initiation step :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 5

Step II. Chain propagation step :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 6
Step III. Chain terminating step :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 7

Question 11.
Define thermoplastics and thermosetting polymers with two examples Of each.
Answer:
Thermoplastic polymers: These polymers are the linear or slightly. branched long-chain molecules capable of repeatedly softening on heating and hardening on cooling. These polymers possess intermolecular forces of attraction intermediate between elastomers and fibres. Some common examples are polythene, polystyrene, polyvinyl, etc.

Thermosetting polymers: These polymers are cross-linked or heavily branched molecules, which on heating undergo extensive cross-linking in moulds and again become infusible. These polymers cannot be reused. Some common examples are bakelite, urea-formaldehyde resins, etc.

Question 12.
Write the monomers used for getting the following polymers :
(i) Polyvinyl chloride
(ii) Teflon
(iii) Bakelite
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 8

Question 13.
Write the name and structure of one of the common initiators used in free radical addition polymerisation.
Answer:
One common initiator used in free radical addition polymerisation is benzoyl peroxide. Its structure is given below:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 9

Question 14.
How does the presence of double bonds in rubber molecules influence their structure and reactivity?
Answer:

  • In natural rubber (cis- 1,4-polyisoprene), double bonds are located between C2 and C3 of isoprene units.
  • The double bonds are reactive sites and helps in vulcanisation of natural rubber forming S-S linkages between chains.
  • The cis-configuration about double bonds do not allow the chains to come closer and so there are weak intermolecular attractions between the chains. This leads to coiled structure and elasticity for natural rubber.

Question 15.
Discuss the main purpose of vulcanisation of rubber.
Answer:
Natural rubber becomes soft at high temperatures (> 335K) and brittle at low temperatures (< 283 K) and shows high water absorption capacity. It is soluble in non-polar solvents and is non-resistant to attack by oxidising agents. To improve upon these physical properties, a process of vulcanisation is carried out. This process consists of heating a mixture of raw rubber with sulphur and an appropriate additive at a temperature range between 373 K and 415 K. On vulcanisation, sulphur forms cross-links at the reactive sites of double bonds and thus the rubber gets stiffened.

Question 16.
What are the monomeric repeating units of Nylon-6 and Nylon-6,6?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 10
(ii) Nylon-6,6: 1,6-Hexamethylenediamine and adipic acid.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 11

Question 17.
Write the names and structures of the monomers of the following polymers:
(i) Buna-S,
(ii) Buna-N,
(iii) Dacron,
(iv) Neoprene
Answer:
The names and structures of monomers are :

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 12

Question 18.
Identify the monomer in the following polymeric structures :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 13
Answer:
The monomers forming the polymer are :
(i) Decanoic acid HOOC-(CH2)8-COOH and Hexamethylenediamine H2N-(CH2)6-NH2.
(ii)
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 14

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 19.
How is dacron obtained from ethylene glycol and terephthalic acid?
Answer:
Dacron is a synthetic condensation polymer which has ester group in the polymer chain. Terylene was also known by the name.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 15

Question 20.
What is a biodegradable polymer? Give an example of a biodegradable aliphatic polyester.
Answer:
A polymer that can be decomposed by bacteria is called a biodegradable polymer.
Poly-β-hydroxybutyrate-CO-β-hydroxy valerate (PHBV) is a biodegradable aliphatic polyester.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 16

Chemistry Guide for Class 12 PSEB Polymers Textbook Questions and Answers

Question 1.
What are polymers?
Answer:
Polymers are high molecular mass macromolecules, which consist of repeating structural units derived from monomers. Polymers have a high molecular mass (103 – 107 u). In a polymer, various monomer units are joined by strong covalent bonds. These polymers can be natural as well as synthetic. Polythene, rubber, and nylon 6, 6 are examples of polymers.

Question 2.
How are polymers classified on the basis of structure?
Answer:
Polymers are classified on the basis of structure as follows:
1. Linear polymers: These polymers are formed of long straight chains. They can be depicted as :
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 17
e.g., high-density polythene (HDP), polyvinyl chloride PVC, etc.

2. Branched-chain polymers: These polymers are basically linear chain polymers with some branches. These polymers are represented as:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 18
e.g., low-density polythene (LDP), amylopectin, etc.

3. Cross-linked or Network polymers: These polymers have many cross-linking bonds that give rise to a network-like structure. These polymers contain bi-functional and tri-functional monomers and strong covalent bonds between various linear polymer chains. Examples of such polymers include bakelite and Melmac.
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 19

Question 3.
Write the names of monomers of the following polymers:
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 20
Answer:
(i) Hexamethylenediamine [H2N—(CH2)6—NH2] and adipic acid [HOOC—(CH2)4 —COOH].
(ii) Caprolactam
PSEB 12th Class Chemistry Solutions Chapter 15 Polymers 21
(iii) Tetrafluoroethene, (F2C – CF2).

Question 4.
Classify the following as addition and condensation polymers: Terylene, Bakelite, Polyvinyl chloride, Polythene.
Answer:
Addition polymers: Polyvinyl chloride, polythene.
Condensation polymers: Terylene, bakelite.

PSEB 12th Class Chemistry Solutions Chapter 15 Polymers

Question 5.
Explain the difference between Buna-N and Buna-S.
Answer:
Both are copolymers. Buna-N is a copolymer of 1, 3-butadiene and acrylonitrile while Buna-S is a copolymer of 1,3-butadiene and styrene.

Question 6.
Arrange the following polymers in increasing order of their intermolecular forces:
(i) Nylon-6,6, Buna-S, Polythene
(ii) Nylon-6, Neoprene, Polyvinylchloride.
Answer:
(i) Buna-S < Polythene < Nylon-6,6
(ii) Neoprene < Polyvinyl chloride < Nylon-6

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 1 The Solid State Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 1 The Solid State

PSEB 12th Class Chemistry Guide The Solid State InText Questions and Answers

Question 1.
Define the term ‘amorphous’. Give a few examples of amorphous solids.
Answer:
Amorphous solids are the solids whose constituent particles are of irregular shapes and have short range order. In such an arrangement, a regular and periodically repeating pattern is observed over short distances only. Examples are glass, rubber, and plastic.

Question 2.
What makes a glass different from a solid such as quartz? Under what conditions could quartz be converted into glass?
Answer:
Glass is an amorphous solid in which the constituent particles (SiO4 tetrahedral) have only a short range order, but in quartz, the constituent particles have both long range and short range orders. Quartz can be converted into glass by melting it and cooling it rapidly.

Question 3.
Classify each of the following solids as ionic, metallic, molecular, network (covalent) or amorphous.
(i) Tetra phosphorus decoxide (P4O10)
(ii) Ammonium phosphate (NH4)3PO4
(iii) SiC
(iv) I2
(v) P4
(vi) Plastic
(vii) Graphite
(viii) Brass
(ix) Rb
(x) LiBr (xi) Si.
Answer:
Ionic Solid – (ii) Ammonium phosphate (NH4)3PO4, (x) LiBr
Metallic Solid – (viii) Brass, (ix) Rb
Molecular Solid – (i) Tetra phosphorus decoxide (P4O10), (iv) I2, (v) P4.
Covalent (network) Solid – (iii) SiC, (vii) Graphite, (xi) Si
Amorphous Solid – (vi) Plastic

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 4.
(i) What is meant by the term ‘coordination number’?
(ii) What is the coordination number of atoms:
(a) in a cubic close-packed structure?
(b) in a body-centred cubic structure?
Answer:
(i) The number of nearest neighbours of any constituent particle present in the crystal lattice is called its coordination number.
(ii) The coordination number of atoms
(a) in a cubic close-packed structure is 12, and
(b) in a body-centred cubic structure is 8

Question 5.
How can you determine the atomic mass of an unknown metal if you know its density and the dimension of its unit cell? Explain.
Answer:
Atomic mass of element, M = \(\frac{d a^{3} N_{A}}{z}\)
where, d = density
NA = Avogadro’s number
z = Number of atoms present in one unit cell.

Question 6.
‘Stability of a crystal is reflected in the magnitude of its melting point’. Comment. Collect melting points of solid water, ethyl alcohol, diethyl ether and methane from a data book. What can you say about the intermolecular forces between these molecules?
Answer:
(i) Higher the melting point, greater is the intermolecular force of attraction and greater is the stability. A substance with higher melting point is more stable than a substance with lower melting point.

(ii) The melting points of the given substances are:
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 1
The intermolecular forces in molecules of water and ethyl alcohol are mainly hydrogen bonding. The magnitude is more in water than in ethyl alcohol which is evident from the value of their melting points. The intermolecular forces in the molecules of diethyl ether are dipolar forces while in methane only weak vander waals’ force of attraction exist. The value of melting points are the evidences for the same.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 7.
How will you distinguish between the following pairs of terms:
(i) Hexagonal close-packing and cubic close-packing?
(ii) Crystal lattice and unit cell?
(iii) Tetrahedral void and octahedral void?
Answer:
(i) Hexagonal close packing (hep): The first layer is formed utilizing maximum space, thus wasting minimum space. In every second row the particles occupy the depressions (also called voids) between the particles of the first row. In the third row, the particles are vertically aligned with those in the first row giving AB AB AB … arrangement. This structure has hexagonal symmetry and is known as hexagonal close packing (hep). This packing is more efficient and leaves small space which is unoccupied by spheres. In hep arrangement, the coordination number is 12 and only 26% space is free. A single unit cell has 4 atoms.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 2
Cubic close packing (ccp) Again, if we start with hexagonal layer of spheres and second layer of spheres is arranged by placing the spheres over the voids of the first layer, half of these holes can be filled by these spheres. Presume that spheres in the third layer are arranged to cover octahedral holes. This arrangement leaves third layer not resembling with either first or second layer, but fourth layer is similar to first, fifth
layer to second, sixth to third and so on giving pattern ABCABCABC …. This arrangement has cubic symmetry and is known as cubic closed packed (ccp) arrangement. This is also called face-centred cubic (fee) arrangement.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 3
The free space available in this packing is 26% and coordination number is 12.

(ii) The regular three dimensional arrangement of identical points in the space which represent how the constituent particles (atoms, ions, molecules) are arranged in a crystal is called a crystal lattice.
A unit cell is the smallest portion of a crystal lattice, which when repeated over and again in different directions produces the complete crystal lattice.

(iii) A void surrounded by four spheres occupying the corners of tetrahedron is called a tetrahedral void. It is much smaller than the size of spheres in the close packing. A void surrounded by six spheres along the corners of an octahedral is called octahedral void. The size of the octahedral void is smaller than that of the spheres in the close packing but larger than the tetrahedral void.

Question 8.
How many lattice points are there in one unit cell of each of the following lattice?
(i) Face-centred cubic
(ii) Face-centred tetragonal
(iii) Body-centred
Solution:
(i) Number of corner atoms per unit cell
= 8 corners × \(\frac{1}{8}\) atom per unit cell 8
= 8 × \(\frac{1}{8}\) = 1 atom 8
Number of face centred atoms per unit cell
= 6 face centred atoms × \(\frac{1}{2}\) atom per unit cell
= 6 × \(\frac{1}{2}\) = 3 atoms
∴ Total number of atoms or lattice points =1 + 3 = 4

(ii) As in (i) ;
No. of lattice points = 4

(iii) In bcc unit cell, number of comer atoms per unit cell
= 8 corners × \(\frac{1}{8}\) per corner atom 8
= 8 × \(\frac{1}{8}\) = 1 atom 8
Number of atoms at body centre = 1 × 1 = 1 atom
∴ Total number of atoms or lattice points = 1 + 1 = 2

Question 9.
Explain
(i) The basis of similarities and differences between metallic and ionic crystals.
(ii) Ionic solids are hard and brittle.
Answer:
(i) Similarities
(a) Both ionic and metallic crystals have electrostatic forces of attraction. In ionic crystals, these are between the oppositely charged ions. In metals, these are among the valence electrons and the kernels.
(b) In both cases, the bond is non-directional.

Differences
(a) In ionic crystals, the ions are not free to move. Hence, they cannot conduct electricity in the solid state. They can do so only in the molten state or in aqueous solution. In metals, the valence electrons are not bound but are free to move. Hence, they can conduct electricity in the solid state.

(b) Ionic bond is strong due to electrostatic forces of attraction. Metallic bond may be weak or strong depending upon the number of valence electrons and the size of the kernels.

(ii) Ionic crystals are hard because there are strong electrostatic forces of attraction among the oppositely charged ions. They are brittle because ionic bond is non-directional.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 10.
Calculate the efficiency of packing in case of a metal crystal for
(i) simple cubic
(ii) body-centred cubic
(iii) face-centred cubic (with the assumptions that atoms are touching each other).
Solution:
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 4
(i) Simple Cubic: In a simple cubic lattice, the particles are located only at the corners of the cube and touch each other along the edge.
Let the edge length of the cube be ‘a’ and the radius of each particle be r.
So, we can write: a = 2r
Now, volume of the cubic unit cell = a3
= (2r)3
= 8r3
We know that the number of particles per unit cell is 1.
Therefore, volume of the occupied unit cell
= \(\frac{4}{3}\) πr3
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 5

(ii) Body-centred cubic: It can be observed from the figure given below that the atom at the centre is in contact with the other two atoms diagonally arranged.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 6
From ΔFED, we have
b2 = a2 + a2
⇒ b2 = 2a2
⇒ b = √2a
Again, from ΔAFD, we have
c2 = a2 + b2
⇒ c2 = a2 + 2a2 (since b2 = 2a2)
⇒ c2 = 3a2
⇒ c = √3a
Let the radius of the atom be r.
Length of the body diagonal, c = 4r
⇒ √3a = 4 r
⇒ a = \(\frac{4 r}{\sqrt{3}}\)
r = \(\frac{\sqrt{3} a}{4}\)
or Volume of the unit cell a3 = (\(\frac{4 r}{\sqrt{3}}\))3
A body-centred cubic lattice contains 2 atoms.
So, volume of the occupied cubic lattice = 2 x \(\frac{4}{3}\) r3
= \(\frac{8}{3}\)πr3
∴ Packing efficiency
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 7
(iii) Face-centred cubic: Let the edge length of the unit cell be ‘a’ and the length of the face diagonal AC be b.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 8
From AABC, we have
AC2 = BC2 + AB2
⇒ b2 = a2 + a2
⇒ b2 = 2a2
⇒ b = √2a
⇒ 4r = √2a ⇒ = \(\frac{4 r}{\sqrt{2}}\) (∵ b = 4r)
Volume of the unit cell, a3 = (\(\frac{4 r}{\sqrt{2}}\))3
A face-centred cubic lattic contains 4 atoms
So, volume of the occupied cubic lattic = 4 × \(\frac{4}{3}\) πr3 = \(\frac{16}{3}\) πr3
∴ Packing efficiency
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 9

Question 11.
Silver crystallises in fee lattice. If edge length of the cell is 4.07 × 10-8 cm and density is 10.5 g cm-3, calculate the atomic mass of silver.
Solution:
Given, a = 4.07 × 10-8 cm, d = 10.5 g cm-3
Number of atoms in fee lattice (z) = 8 × \(\frac{1}{8}\) + 6 × \(\frac{1}{2}\) = 1 + 3 = 4
We also know that, NA = 6.022 × 1023 mol-1 (Avogadro’s constant)
Using the formula
d = \(\frac{z M}{a^{3} N_{A}}\)
M = \(\frac{d a^{3} N_{\cdot A}}{z}\)
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 10
= 107.13 g mol-1
Hence, atomic mass of silver = 107.13.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 12.
A cubic solid is made of two elements P and Q. Atoms of Q are at the comers of the cube and P at the body-centre. What is the formula of the compound? What are the coordination numbers ofPandQ?
Solution:
It is given that the atoms of Q are present at the corners of the cube.
Therefore, number of atoms of Q in one unit cell = 8 × \(\frac{1}{8}\) = 1
It is also given that the atoms of P are present at the body-centre.
Therefore, number of atoms of P in one unit cell = 1
This means that the ratio of the number of P atoms to the number of Q
atoms, P : Q = 1 : 1
Hence, the formula of the compound is PQ.
The coordination number of both P and Q is 8.

Question 13.
Niobium crystallises in body-centred cubic structure. If density is 8.55 g cm-3, calculate atomic radius of niobium using its atomic mass 93 u.
Solution:
Given, d. = 8.55 g cm-3, M = 93gmol-1
Number of atoms in bcc lattice (z) = 8 × \(\frac{1}{8}\) + 1 × 1 = 1 + 1 = 2
We know that, NA = 6.022 × 10 23 mol-1 (Avogadro’s constant)
Using the formula
d = \(\frac{z M}{a^{3} N_{A}}\)
⇒ a3 = \(\frac{z M}{d N_{A}}\) = \(\frac{2 \times 93 \mathrm{~g} \mathrm{~mol}^{-1}}{8.55 \mathrm{gcm}^{-3} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}}\)
= 3.612 × 10-23 cm3
so, a = 3.306 × 10-8cm
For body-centerd cubic unit cell:
r = \(\frac{\sqrt{3}}{4}\) a = \(\frac{\sqrt{3}}{4}\) × 3.306 10-8cm
= 1.432 × 10-8 cm = 14.32 × 10-6 cm = 14.32

Question 14.
If the radius of the octahedral void is r and radius of the atoms in close packing is R, derive relation between r and R.
Solution:
A sphere with centre 0, is fitted into the octahedral void as shown in the figure given below. It can be observed from the figure that ΔPOQ is right-angled
∠POQ =90°
Now, applying Pythagoras theorem, we have
PQ2 = PO2 + OQ2
⇒ (2R)2 = (R + r2) + (R + r)2
⇒ (2R)2 = 2(R + r)
⇒ 2R2 = (R + r)2
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 11
⇒ √R = R + r
⇒ r = √2R – R
⇒ r = (√2 – 1)K
⇒ r = (1.414 – 1)R
⇒ r = 0.4141 R

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 15.
Copper crystallises into a fee lattice with edge length 3.61 × 10-8 cm. Show that the calculated density is in agreement with its measured value of 8.92 g cm-3.
Solution:
Given, edge length, a = 3.61 × 10-8 cm
Number of atoms of Cu in fee unit cell, z = 8 × \(\frac{1}{8}\) + 6 × \(\frac{1}{2}\) = 1 + 3 = 4
Atomic mass, M = 63.5 g mol-1
We know that, NA = 6.022 × 1023 mol-1 (Avogadro’s number)
Using the formula
d = \(\frac{z M}{a^{3} N_{A}}\)
= \(\frac{4 \times 63.5 \mathrm{~g} \mathrm{~mol}^{-1}}{\left(3.61 \times 10^{-8} \mathrm{~cm}\right)^{3} \times\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)}\)
= 8.97 g cm
The measured value of density is given as 8.92 g cm-3 . Hence, the calculated density 8.97 g cm-3 is in agreement with its measured value.

Question 16.
Analysis shows that nickel oxide has the formula Ni0.98O1.00.
What fractions of nickel exist as Ni2+ and Ni3+ions?
Solution:
98 Ni atoms are associated with 100 O atoms. Out of 98 Ni atoms,
suppose Ni present as Ni2+ = x
Then, Ni present as Ni3+ = 98 – x
Total charge on x Ni2+ and (98 – x) Ni3+ should be equal to charge on 100 O2- ions.
Therefore x × 2 + (98 – x) × 3 = 100 × 2
2x + 294 – 3x = 200
x = 94
∴ Fraction of Ni present as Ni2+ = \(\frac{94}{98}\) × 100 = 96%
Fraction of Ni present as Ni3+ = \(\frac{4}{98}\) × 100 = 4%

Question 17.
What is a semiconductor? Describe the two main types of semiconductors and contrast their conduction mechanism.
Answer:
Semiconductors are substances having conductance in the intermediate range of 10-6 to 104 ohm-1 m-1. As there is rise in the temperature, conductivity also increase because electrons from the valence band jump to conduction band.
The two main types of semiconductors are:
n-type semiconductor: The semiconductor whose increased conductivity is a result of negatively-charged electrons is called an n-type semiconductor. When the crystal of a group 14 element such as Si or Ge is doped with a group 15 element such as P or As, an n-type semiconductor is formed.

Si and Ge have four valence electrons each. In their crystals, each atom forms four covalent bonds. On the other hand, P and As contain five valence electrons each. When Si or Ge is doped with P or As, the latter occupies some of the lattice sites in the crystal. Four out of five electrons are used in the formation of four covalent bonds with four neighbouring Si or Ge atoms. The remaining fifth electron becomes delocalised and increases the conductivity of the doped Si or Ge.

p-type semiconductor: The semiconductor whose increased in conductivity is a result of electron hole is called a p-type semiconductor. When a crystal of group 14 elements such as Si or Ge is doped with a group 13 element such as B, Al, or Ga (which contains only three valence electrons), a p-type of semiconductor is formed.

When a crystal of Si is doped with B, the three electrons of B are used in the formation of three covalent bonds and an electron hole is created. An electron from the neighbouring atom can come and fill this electron hole, but in doing so, it would leave an electron hole at its original position. The process appears as if the electron hole has moved in the direction opposite to that of the electron that filled it. Therefore, when an electric field is applied, electrons will move toward the positively-charged plate through electron holes. However, it will appear as if the electron holes are positively-charged and are moving toward the negatively- charged plate.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 18.
Non-stoichiometric cuprous oxide, Cu2O can he prepared in laboratory. In this oxide, copper to oxygen ratio is slightly less than 2:1. Can you account for the fact that this substance is a p-type semiconductor?
Answer:
In the cuprous oxide (Cu2O) prepared in the laboratory, copper to oxygen ratio is slightly less than 2:1. This means that the number of Cu+ ions is slightly less than twice the number of O2- ions. This is because some Cu+ ions have been replaced by Cu2+ ions. Every Cu2+ ion replaces two Cu+ ions, thereby creating holes. As a result, the substance conducts electricity with the help of these positive holes. Hence, the substance is a p-type semiconductor.

Question 19.
Ferric oxide crystallises in a hexagonal close-packed array of oxide ions with two out of every three octahedral holes occupied by ferric ions. Derive the formula of the ferric oxide.
Solution:
Let the number of oxide ions (O2-) in the closed packing be x.
So, number of octahedral voids = x
It is given that two out of every three octahedral holes are occupied by ferric ions.
So, number of ferric (Fe3+ ) ions = \(\frac{2}{3}\)x
Therefore, ratio of the number of Fe3+ ions to the number of O2- ions,
Fe3+: O2- = \(\frac{2}{3}\)x : x = \(\frac{2}{3}\) : 1 = 2 : 3
Hence, the formula of the ferric oxide is Fe2O3.

Question 20.
Classify each of the following as being either a p-type or an n-type semiconductor:
(i) Ge doped with In
(ii) Si doped with B.
Answer:
(i) Ge (a group 14 element) is doped with In (a group 13 element). Therefore, a hole will be created and the semiconductor generated will be a p-type semiconductor.
(ii) Si (a group 14 element) is doped with B (a group 13 element). Thus, a hole will be created and the semiconductor generated will be a p-type semiconductor.

Question 21.
Gold (atomic radius = 0.144 nm) crystallises in a face-centred unit cell. What is the length of a side of the cell?
Solution:
For a face-centred unit cell (fee)
Edge length, (a) = 2√2r
It is given that the atomic radius, r = 0.144 nm
So, a = 2√2 × 0.144 nm = 0.407 nm
Hence, length of a side of the cell = 0.407 nm

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 22.
In terms of band theory, what is the difference (i) between a conductor and an insulator
between a conductor and a semiconductor
(i) The energy gap between the valence band and conduction band in an insulator is very large while in a conductor, the energy gap is very small or there is overlapping between valence band and conduction band.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 12
(ii) In a conductor, there is a very small energy gap or there is overlapping between valence band and conduction band whereas in semiconductor there is always a small energy gap between them.

Question 23.
Explain the following terms with suitable examples:
(i) Schottky defect
(ii) Frenkel defect
(iii) Interstitials and
(iv) F-centres
Answer:
(i) Schottky defect: This defect arises when equal number of cations and anions are missing from the lattice. It is a common defect in ionic compounds of high coordination number where both cations and anions are of the same size, e.g., KCl, NaCl, KBr, etc. Due to this defect, density of crystal decreases and it begins to conduct electricity to a smaller extent.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 13
(ii) Frenkel defect: This defect arises when some of the ions of the lattice occupy interstitial sites leaving lattice sites vacant. This defect is generally found in ionic crystals where anion is much larger in size than the cation, e.g., AgBr, ZnS, etc. Due to this defect density does not change, electrical conductivity increases to a small extent and there is no change in over all chemical composition of the crystal.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 14
(iii) Interstitial defect : When some constituent particles (atoms or molecules) occupy an interstitial site, the crystal is said to have interstitial defect. Due to this defect the density of the substance increases.
Vacancy and interstitial defects are generally shown by non-ionic solids because ionic solids must always maintain electrical neutrality.

(iv) F-centres: These are the anionic sites occupied by unpaired electrons. F-centres impart colour to crystals. They impart yellow colour to NaCl crystals, violet colour to KCl crystals and pink colour to LiCl crystals.
The colour results by the excitation of electrons when they absorb energy from the visible light falling on the crystal.

Question 24.
Aluminium crystallises in a cubic close-packed structure. Its metallic radius is 125 pm.
(i) What is the length of the side of the unit cell?
(ii) How many unit cells are there in 1.00 cm3 of aluminium?
Solution:
(i) For an fee unit cell, r = \(\frac{a}{2 \sqrt{2}}\) (given, r = 125 pm)
a = 2√2 r = 2√2 × 125 pm
= 353.55 pm
≅354 pm

(ii) Volume of one unit cell = a3 = (354 pm)3
= 4.4 × 107 pm3
= 4.4 × 107 × 10-30cm3
= 4.4 × 10-23 cm3
Therefore, number of unit cells in 1.00 cm3 = \(\frac{1.00 \mathrm{~cm}^{3}}{4.4 \times 10^{-23} \mathrm{~cm}^{3}}\)
= 2.27 × 1022

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 25.
If NaCl is doped with 10-3 mol % of SrCl2, what is the concentration of cation vacancies?
Solution:
It is given that NaCl is doped with 10-3 mol% of SrCl2, this means that 100 mol of NaCl are doped with 10-3 mol of SrCl2.
Therefore, 1 mol of NaCl is doped with SrCl2 = \(\frac{10^{-3}}{100}\) = 10-5 mol
Cation vacancies produced by one Sr2+ ion = 1
∴ Concentration of the cation vacancies produced by 10-5 mol of Sr2+ ions
= 10-5 × 6.022 × 1023
= 6.022 × 1018 mol-1
Hence, the concentration of cation vacancies created by SrCl2 is 6.022 × 1018 per mol of NaCl.

Question 26.
Explain the following with suitable examples:
(i) Ferromagnetism
(ii) Paramagnetism
(iii) Ferrimagnetism
(iv) Antiferromagnetism
(v) 12-16 and 13-15 group compounds.
Answer:
(i) Ferromagnetism: They have strong attraction towards the magnetic field. These substances can be permanently magnetised.
In solid state, the metal ions of ferromagnetic substances are grouped together into small regions, called domains. Thus, each domain acts as a tiny magnet. When the substance is placed in a magnetic field all the domains get oriented in the direction of the magnetic field, and a
strong magnetic effect is produced. This ordering domains persist even when the magnetic field is removed and the ferromagnetic substance becomes a permanent magnet.
A few substances like iron, cobalt, nickel, CrO2 shows ferromagnetism at room temperature.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 15

(ii) Paramagnetism: These materials are weakly attracted by a magnetic field. They can be magnetised in a magnetic field in the same direction Paramagnetism is due to the presence of one or more unpaired electrons which are attracted by the magnetic field.
O2, Cu2+, Fe3+, Cr3+ are some examples of such substances. They loss their magnetism in the absence of magnetic field.

(iii) Ferrimagnetism: When the magnetic moments of the domains in the substance are aligned in parallel and antiparallel direction in unequal numbers they are weakly attracted by magnetic field as compared to ferromagnetic substances. Fe3O4 (magnetite) and ferrites like MgFe2O4 and ZnFe2O4 are examples of such substances. These substances also lose ferrimagnetism on heating and become paramagnetic.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 16
(iv) Antiferromagnetism: In these substances their domains are aligned in such a way that net magnetic moment is zero. This type of magnetism is called antiferromagnetism. For example, MnO has antiferromagnetism.

(v) 12-16 and 13-15 group compounds: Combination of elements of groups 12 and 16 yield some solid compounds which are referred to as 12-16 compounds. For example, ZnS, CdS, CdSe, HgTe, etc. In these compounds, the bonds have ionic character.
When the solid state materials are produced by combination of elements of groups 13 and 15, the compounds thus obtained are called 13-15 compounds. For example, InSb, AIP, GaAs, etc.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Chemistry Guide for Class 12 PSEB The Solid State Textbook Questions and Answers

Question 1.
Why are solids rigid?
Answer:
The intermolecular forces of attraction that are present in solids are very strong. The constituent particles of solids cannot move from their positions i.e., they have fixed positions. They can only oscillate about their mean positions due to strong attraction forces between the particles. This imparts rigidity.

Question 2.
Why do solids have a definite volume?
Answer:
The constituent particles in solids are bound to their mean positions by strong forces of attraction. The interparticle distances remain unchanged at a given temperature. Therefore, solids have a definite volume.

Question 3.
Classify the following as amorphous or crystalline solids:
Polyurethane, naphthalene, benzoic acid, teflon, potassium nitrate, cellophane, polyvinyl chloride, fibre glass, copper.
Answer:
Amorphous solids Polyurethane, teflon, cellophane, polyvinyl chloride, fibre glass.
Crystalline solids: Naphthalene, benzoic acid, potassium nitrate, copper

Question 4.
Why is glass considered a super cooled liquid?
Answer:
Similar to liquids, glass has a tendency to flow, though very slowly. Therefore, glass is considered as a super cooled liquid. This is the reason that glass windows or doors of old buildings are invariably found to be slightly thicker at the bottom than the top.

Question 5.
Refractive index of a solid is observed to have the same value along all directions. Comment on the nature of this solid. Would it show cleavage property?
Answer:
An isotropic solid has the same value of physical properties when measured along different directions. Therefore, the given solid, having the same value of refractive index along all directions, is isotropic in nature. Hence, the solid is an amorphous solid.

When an amorphous solid is cut with a sharp edged tool, it cuts into two pieces with irregular surfaces.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 6.
Classify the following solids in different categories based on the nature of intermolecular forces operating in them :
Potassium sulphate, tin, benzene, urea, ammonia, water, zinc sulphide, graphite, rubidium, argon, silicon carbide.
Answer:
Potassium sulphate, zinc sulphide – Ionic solids (as they have ionic bond)
Tin, rubidium – Metallic solids (as these are metals)
Benzene, urea, ammonia, water, argon – Molecular solids (as they have covalent bond)
Graphite, silicon carbide – Covalent solids (as they are covalent giant molecules)

Question 7.
Solid A is a very hard electrical insulator in solid as well as in molten state and melts at extremely high temperature. What type of solid is it?
Answer:
Since, the solid A is an insulator in solid as well as in molten state, it shows the absence of ions in it. Moreover it melts at extremely high temperature, so it is a giant molecule. These are the properties of covalent solids so it is a covalent solid. Examples of such solids include diamond (C) and quartz (SiO2).

Question 8.
Ionic solids conduct electricity in molten state hut not in solid state. Explain.
Answer:
In ionic solids, electricity is conducted by ions. In solid state, ions are held together by strong electrostatic forces and are not free to move about within the solid. Hence, ionic solids do not conduct electricity in solid state. However, in molten state or in solution form, the ions are free to move and can conduct electricity.

Question 9.
What type of solids are electrical conductors, malleable and ductile?
Answer:
Metallic solids are electrical conductors, malleable and ductile.

Question 10.
Give the significance of a ‘lattice point’.
Answer:
The significance of a lattice point is that each lattice point represents one constituent particle of a solid which may be an atom, a molecule or an ion. The arrangement of the lattice points in shape is responsible for the shape of a particular crystalline solid.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 11.
Name the parameters that characterise a unit cell.
Answer:
A unit cell is characterised by:
(i) its dimensions along the three edges, a, b, and c. These edges may or may not be mutually perpendicular.
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 17
(ii) angles between the edges, which are α (between b and c), β (between a and c) and γ(between a and b)

Question 12.
Distinguish between
(i) Hexagonal and monoclinic unit cells
(ii) Face-centred and end-centred unit cells.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 18

Unit cell Face-centred End-centred
(a) Position of lattice points At the corners and at the centre of each face At the corners and at the centres of two end faces
(b) No. of atoms per unit cell 8 × \(\frac{1}{8}\) + 6 × \(\frac{1}{2}\) = 4 8 × \(\frac{1}{8}\) + 2 × \(\frac{1}{2}\) = 2

Question 13.
Explain how much portion of an atom located at (i)comer and
(ii) body-centre of a cubic unit cell is part of its neighbouring unit cell.
Answer:
(i) An atom located at the corner of a cubic unit cell is shared by eight unit cells.
Therefore, \(\frac{1}{8}\)th portion of the atom is shared by one unit cell.

(ii) An atom located at the body centre of a cubic unit cell is not shared by its neighbouring unit cell. Therefore, the atom belongs only to the unit cell in which it is present i.e., its contribution to the unit cell is one.

Question 14.
What is the two dimensional coordination number of a molecule in square close packed layer?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 19
In square close-packed layer, a molecule is in contact with four of its neighbours. Therefore, the two-dimensional coordination number of a molecule in square close-packed layer is four.

Question 15.
A compound forms hexagonal close-packed structure. What is the total number of voids in 0.5 mol of it? How many of these are tetrahedral voids?
Solution:
Number of close-packed structure = 0.5 × 6.022 × 1023 = 3.011 × 1023
Therefore, number of octahedral voids = 3.011 × 1023
Number of tetrahedral voids = 2 × 3.011 × 1023 = 6.022 × 1023
Therefore, total number of voids
= 3.011 × 1023 + 6.022 × 1023 = 9.033 × 1023

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 16.
A compound is formed by two elements M and N. The element N forms ccp and atoms of M occupy 1/3rd of tetrahedral voids. What is the formula of the compound?
Solution:
Suppose atoms of element N represent in ccp = x
Then, number of tetrahedral voids = 2x
According to the question, the atoms of element M occupy \(\frac{1}{3}\)rd of the tetrahedral voids.
Therefore, the number of atoms of element M = 2x × \(\frac{1}{3}\) = \(\frac{2 x}{3}\)
Ratio of M : N = \(\frac{2 x}{3}\): x = 2 : 3
Thus, the formula of the compound is M2N3.

Question 17.
Which of the following lattices has the highest packing efficiency
(i) simple cubic
(ii) body-centred cubic and
(iii) hexagonal close-packed lattice?
Answer:
Hexagonal close-packed lattice has the highest packing efficiency of 74%. The packing efficiencies of simple cubic and body-centred cubic lattices are 52.4% and 68% respectively.

Question 18.
An element with molar mass 2.7 × 10-2 kg mol-1 forms a cubic unit cell with edge length 405 pm. If its density is 2.7 × 103 kgm-3, what is the nature of the cubic unit cell?
Solution:
Given density, d = 2.7 × 103 kg m-3
Molar mass, M =2.7 × 10-2 kg mol-1
Edge length, a = 405 pm = 405 × 10-12m = 4.05 × 10-10 m
Avogadro’s number, NA = 6.022 × 1023 mol-1
Using the formula d = \(\frac{z \times M}{a^{3} \times N_{A}}\) => z = \(\frac{d \times a^{3} \times N_{A}}{M}\)
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 20
= 4.004 = 4
Since, there are four atoms of the element present per unit cell. Hence, the cubic unit cell is face-centred cubic {fee) or cubic close-packed (ccp).

Question 19.
What type of defect can arise when a solid is heated? Which physical property is affected by it and in what way?
Answer:
When a solid is heated, vacancy defect can arise. A solid crystal is said to have vacancy defect when some of the lattice sites are vacant. Vacancy defect leads to a decrease in the density of the solid.

Question 20.
What type of stoichiometric defect is shown’by:
(i) ZnS
(ii) AgBr
Answer:
(i) ZnS shows Frenkel defect because its ions have large difference in size.
(ii) AgBr shows Frenkel defect as well as Schottky defect.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 21.
Explain how vacancies are introduced in an ionic solid when a cation of higher valence is added as an impurity in it.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State 21
When a cation of higher valence is added to an ionic solid as an impurity to it, the cation of higher valence replaces more than one cation of lower valence so as to keep the crystal electrically neutral. As a result, some sites become vacant. For example, when Sr2+is added to NaCl, each Sr2+ ion replaces two Na+ ions. However, one Sr2+ ion occupies the site of one Na+ ion and the other site remains vacant. Hence, vacancies are introduced. The reason is that the crystal as a whole is to remain electrically neutral.

Question 22.
Ionic solids, which have anionic vacancies due to metal excess defect, develop colour. Explain with the help of a suitable example.
Answer:
The colour develops because of the presence of electrons in the anionic sites. These electrons absorb energy from the visible part of radiation and get excited. For example, when crystals of NaCl are heated in an atmosphere of sodium vapours, the sodium atoms get deposited on the surface of the crystal and the chloride ions from the crystal diffuse to the surface to form NaCl with the deposited Na atoms. During this process, the Na atoms on the surface lose electrons to form Na+ ions and the released electrons diffuse into the crystal to occupy the vacant anionic sites. These electrons get excited by absorbing energy from the visible light and impart yellow colour to the crystals. These electrons are called F-centres (from the German word Farbenzenter meaning colour centre).

Question 23.
A group 14 element is to be converted into re-type semiconductor by doping it with a suitable impurity. To which group should this impurity belong?
Answer:
An n-type semiconductor conducts because of the presence of extra electrons. Therefore, a group 14 element can be converted to n-type semiconductor by doping it with a group 15 element.

PSEB 12th Class Chemistry Solutions Chapter 1 The Solid State

Question 24.
What type of substances would make better permanent magnets, ferromagnetic or ferrimagnetic. Justify your answer.
Answer:
Ferromagnetic substances make better permanent magnets than ferrimagnetic substances.
In solid state, the metal ions of ferromagnetic substances are grouped together into small regions. These regions are called domains and each domain acts as a tiny magnet. In an unmagnetised piece of a ferromagnetic substance, the domains are randomly oriented. As a result, the magnetic moments of the domains get cancelled. However, when the substance is placed in a magnetic field, all the domains get oriented in the direction of the magnetic field and a strong magnetic effect is produced.

The ordering of the domains persists even after the removal of the magnetic field. Thus, the ferromagnetic substance becomes a permanent magnet.

 

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 16 Chemistry in Everyday Life Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 16 Chemistry in Everyday Life

PSEB 12th Class Chemistry Guide Chemistry in Everyday Life InText Questions and Answers

Question 1.
Why do we need to classify drugs in different ways?
Answer:
Different ways of classification of drugs and the usefulness of such classification are as follows :

  1. Classification on the basis of pharmacological effect is useful for doctors because it provides them the whole range of drugs available for the treatment of a particular type of problem.
  2. Classification on the basis of drug action on a particular biochemical process is useful for choosing the correct lead compound for designing the synthesis of a desired drug.
  3. Classification on the basis of molecular targets is useful for medicinal chemists so that they can design a drug which is most effective for a particular receptor site.
  4. Classification on the basis of chemical structure is useful for doctors to design the synthesis of a number of structurally similar compounds having different substituents and then choosing the drug having the least toxicity.

Question 2.
Explain the term target molecules or drug targets as used in medicinal chemistry.
Answer:
Drugs interact with macromolecules such as proteins, carbohydrates, lipids, enzymes and nucleic acids. Hence, these are called drug targets. Drugs possessing some common structural features may have the same mechanism of action on targets.

Question 3.
Name the macro-molecules that are chosen as drug targets.
Answer:
Nucleic acids, proteins, carbohydrates, lipids, enzymes are chosen as drug targets.

Question 4.
Why should not medicines be taken without consulting doctors?
Answer:
Side effects are caused when a drug binds to more than one receptor site. So, a doctor must be consulted to choose the right drug which has the maximum affinity for a particular receptor site to have the desired effect. The dose of the drug is also crucial because some drugs like opiates in higher doses act as poisons and may cause death.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 5.
Define the term chemotherapy.
Answer:
The branch of chemistry which deals with the treatment of diseases using chemicals is called chemotherapy.

Question 6.
Which forces are involved in holding the drugs to the active site of enzymes?
Answer:
Ionic bonding, hydrogen bonding, van der Waals’ interaction, dipole-dipole interaction etc., are involved in holding the drugs to the active site of enzymes.

Question 7.
While antacids and antiallergic drugs interfere with the function of histamines, why do these not interfere with the function of each other?
Answer:
These (antacids and antiallergic drugs) do not interfere with the function of each other because they work on different receptors in the body.

Question 8.
Low level of noradrenaline is the cause of depression. What type of drugs are needed to cure this problem? Name two drugs.
Answer:
In event of low level of neurotransmitters, noradrenaline, antidepressant drugs are required. These drugs inhibit the enzymes which catalyse the degradation of noradrenaline. If the enzyme is inhibited, noradrenaline is slowly metabolised and thus activates its receptor for longer periods of time thereby reducing depression. Two important drugs are iproniazid and phenelzine.

Question 9.
What is meant by the term ‘broad-spectrum antibiotics? Explain.
Answer:
Broad-spectrum antibiotics are effective against several different types of harmful bacteria. Examples are tetracycline, ofloxacin, chloramphenicol, etc. Chloramphenicol can be used in case of typhoid, acute fever, dysentery, urinary infections, meningitis and pneumonia.

Question 10.
How do antiseptics differ from disinfectants? Give one example of each.
Answer:
Differences between antiseptics and disinfectants are as follows :
Antiseptics

  • Antiseptics are chemical substances which prevent the growth of microorganisms and may even kill them but are not harmful to living tissues.
  • Antiseptics are generally applied to living tissues such as wounds, cuts, ulcers and diseased skin surfaces.
  • Dettol, furnace, soframicine are antiseptics.

Disinfectants

  • Disinfectants are chemical substances which kill microorganisms or stop their growth but are harmful to human tissues.
  • Disinfectants are applied to inanimate objects such as floor, drainage system, instruments, etc.
  • Chlorine in the concentration of 0.2 to 0.4 ppm in aqueous solution and SO 2 in very low concentration are disinfectants.

Question 11.
Why are cimetidine and ranitidine better antacids than sodium hydrogen carbonate or magnesium or aluminium hydroxide?
Answer:
Excessive use of sodium hydrogen carbonate or a mixture of aluminium and magnesium hydroxide can make the stomach alkaline and trigger the production of even more acid. On the other hand, ranitidine and cimetidine prevent the interaction of histamine with the receptors present in the stomach wall. This results in release of lesser amount of acid. Thus, these are better antacids.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 12.
Name a substance which can be used as an antiseptic as well as disinfectant.
Answer:
0.2% solution of phenol acts as an antiseptic while 1% of the solution acts as a disinfectant.

Question 13.
What are the main constituents of Dettol?
Answer:
Chloroxylenol and a-terpineol in a suitable solvent.

Question 14.
What is tincture of iodine? What is its use?
Answer:
A 2-3 per cent solution of iodine in alcohol-water mixture is known as tincture of iodine. It is used as an antiseptic.

Question 15.
What are food preservatives?
Answer:
Chemical substances which are used to protect food against bacteria, yeasts and moulds are called food preservatives. For example, sodium metabisulphite, sodium benzoate, etc.

Question 16.
Why is the use of aspartame limited to cold foods and drinks?
Answer:
Aspartame decomposes on heating and may not work well. So, its use as an artificial sweetener is limited to foods and drinks at low temperatures.

Question 17.
What are artificial sweetening agents? Give two examples.
Answer:
Artificial sweetening agents are the chemical substances which provide sweetness to the food without increasing the calories to the body. For example, saccharin, aspartame, sucralose etc.

Question 18.
Name the sweetening agent used in the preparation of sweets for a diabetic patient.
Answer:
Saccharin.

Question 19.
What problem arises in using alitame as artificial sweetener?
Answer:
Alitame is a high potency artificial sweetener. Therefore, it becomes difficult to control die level of sweetness while using it.

Question 20.
How are synthetic detergents better than soaps?
Answer:
Advantages of synthetic detergents over soaps :

  • Detergents can work with hard water too while soaps cannot.
  • They can work even in an acidic medium while soaps cannot.
  • Synthetic detergents are stronger cleansing agents than soaps.
  • Their solubility is higher than that of soaps.
  • They are prepared from hydrocarbons (petroleum) so their use is to save vegetable oils which are used during the preparation of soaps.

Question 21.
Explain the following terms with suitable examples :
(i) Cationic detergents
(ii) Anionic detergents and
(iii) Non-ionic detergents
Answer:
(i) Cationic detergents: These are quaternary ammonium salts of amines with acetates, chlorides or bromides.
Example: Cetyl trimethyl ammonium bromide
(ii) Anionic detergents: These detergents have large anionic part in their molecules. These are of two types :
(a) Sodium alkyl sulphates: For example, Sodium lauryl sulphate CH3 (CH2)10 CH2OSO3Na+.
(b) Sodium alkyl benzene sulphonates: For example, sodium dodecylbenzene sulphonate
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 1
(iii) Non-ionic detergents: These are esters of high molecular mass alcohols with fatty acids. For example, Polyethylene glycol stearate.
CH3 (CH2)16 COO(CH2CH2O)nCH2CH2OH.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 22.
What are biodegradable and non-biodegradable detergents? Give one example of each.
Answer:
Detergents having straight hydrocarbon chains are easily degraded by microorganisms and hence are called biodegradable detergents, whereas detergents containing branched hydrocarbon chains are not easily degraded by the microorganisms and hence are called non-biodegradable detergents. As a result, non-biodegradable detergents accumulate in rivers and waterways thereby causing severe water pollution.

Examples of biodegradable detergents are : sodium lauryl sulphate, sodium 4-(l-dodecyl) benzene-sulphonate and sodium 4-(2-dodecyl) benzenesulphonate. An example of non-biodegradable detergent is sodium 4-(l, 3, 5, 7-tetramethyloctyl) benzenesulphonate.

Question 23.
Why do soaps not work with hard water?
Answer:
Calcium and magnesium salts present in hard water react with soaps to form insoluble compounds, which form curdy white precipitates and are difficult to remove from the clothes.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 2

Question 24.
Can you use soaps and synthetic detergents to check the hardness of water?
Answer:
We can use soaps to check the hardness of water because with hard water, soaps give a gummy mass (sticky precipitate) but we cannot use detergents for this purpose because they give foam with both hard and soft water.

Question 25.
Explain the cleansing action of soaps.
Answer:
The cleansing action of soap is due to the fact that soap molecules, such as sodium stearate form micelle around the oil droplet in such a way that hydrophobic part of the stearate ions is in the oil droplet and hydrophilic part projects out of the oil droplet like the bristles.

Since the polar groups can interact with water, the oil droplet surrounded by stearate ions is now pulled in water and removed from the dirty surface. Thus, soap helps in emulsification and washing away of oils and fats. The negatively charged sheath around the globules prevents them from coming together and forming aggregates.
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 3

Question 26.
If the water contains dissolved calcium hydrogen carbonate, out of soaps and synthetic detergents which one will you use for cleaning clothes?
Answer:
Synthetic detergents.

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question 27.
Label the hydrophilic and hydrophobic parts in the following compounds.
(i) CH3(CH2)10CH2OSO3Na+
(ii) CH3(CH2)15N+(CH3)3 Br
(iii) CH3(CH2)16COO(CH2CH2O)n CH2CH2OH
Answer:

Chemistry Guide for Class 12 PSEB Chemistry in Everyday Life Textbook Questions and Answers

Question 1.
Sleeping pills are recommended by doctors to the patients suffering from sleeplessness but It is not advisable to take Its doses without consultation with the doctor. Why?
Answer:
Sleeping pills contain drugs that may be tranquillizers or antidepressants. They affect the nervous system, relieve anxiety, stress, irritability or excitement. But they should strictly be used under the supervision of a doctor. If not, the uncontrolled and overdosage can cause harm to the body and mind because in higher doses these drugs act as poisons.

Question 2.
With reference to which classification has the statement, “ranitidine is an antacid” been given?
Answer:
This statement refers to the classification according to the pharmacological effect of the drug because any drug which will be used to counteract the effect of excess acid in the stomach will be called antacid.

Question 3.
Why do we require artifical sweetening agents?
Answer:
Natural sweeteners (sucrose etc.) provide calories to the body. Taking extra calories is harmful for diabetic patients. So, artificial sweeteners are used (i) to control intake of calories and (ii) as a substitute of sugar for diabetics.

Question 4.
Write the chemical equation for preparing sodium soap from glyceryl oleate and glyceryl palmitate. Structural formulae of these compounds are given below.
(i) (C15H31COO)3C3H5 – Glyceryl pfi]mitate
(ii) (C17H32COO)3C3H5 – Glyceryl oleate
Answer:

PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 5

Question 5.
Following types of non-ionic detergents are present in liquid detergents, emulsifying agents and wetting agents. Label the hydrophilic and hydrophobic parts In the molecule. Identify the functional group(s) present In the molecule.
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 6
Answer:
PSEB 12th Class Chemistry Solutions Chapter 16 Chemistry in Everyday Life 7
(b) Functional groups: Ether and alcohol.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 8 Electromagnetic Waves Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 8 Electromagnetic Waves

PSEB 12th Class Physics Guide Electromagnetic Waves Textbook Questions and Answers

Question 1.
Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15 A.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 1
(a) Calculate the capacitance and the rate of charge of potential difference between the plates.
(b) Obtain the displacement current across the plates.
(c) Is Kirchhoffs first rule (junction rule) valid at each plate of the capacitor? Explain.
Answer:
(a) Capacitance of capacitor is given by the relation
C = \(\frac{\varepsilon_{0} A}{d}\) = \(\frac{8.854 \times 10^{-12} \times \pi \times(0.12)^{2}}{5 \times 10^{-2}}\)
= 8.01F
Also \(\frac{d Q}{d t}\) = \(\frac{d V}{d t}\)
∴ \(\frac{d V}{d t}\) = \(\frac{0.15}{8.01 \times 10^{-12}}\)
= 1.87 × 1010V /s

(b) Displacement current Id = ε0 × \(\frac{d}{d t}\) (ΦE)
Again ΦE – EA across Hence,(negative end constant).
Hence, Id = ε0 A\(\frac{d E}{d t}\)
Again, E = \(\frac{Q}{\varepsilon_{0} A}\)
So, \(\frac{d E}{d t}=\frac{i}{\varepsilon_{0} A}\)
which corresponds id = i = 1.5A

(c) Yes, Kirchhoffs law is valid provided by current, we mean the sum of condition and displacement current.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 2.
A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s-1.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 2
(a) What is the rms value of the conduction current?
(b) Is the conduction current equal to the displacement current?
(c) Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
Answer:
(a) Irms = Vrms × Cω
= 230 × 100 × 1012 × 300
= 6.9 × 10-6 A = 6.9 μ A

(b) Yes, we know that the deviation is correct even if I is steady DC or AC (oscillating in time) can be proved as
Id = ε0\(\frac{d}{d t}\) (σ) = ε0\(\frac{d}{d t}\) (EA) (> σ = EA)
ε0A \(\frac{d E}{d t}\) = ε0A \(\frac{d}{d t}\) (\(\frac{\sigma}{\varepsilon_{0}}\))
ε0A \(\frac{d}{d t}\) (\(\frac{\sigma}{\varepsilon_{0} A}\)) (> σ = \(\frac{q}{A}\))
ε0A × \(\frac{1}{\varepsilon_{0} A} \cdot \frac{d q}{d t}\) = I
which is the required proof.

(c) The region formula for magnetic field
B = \(\frac{\mu_{0} r}{2 \pi R^{2}}\)id
even if Id is oscillating (and so magnetic field B): The formula is valid. ID oscillates in phase as i0 = i (peak value of current). Now, we have
B0 = \(\frac{\mu_{0} r}{2 \pi R^{2}}\)i0
where B0 and i0 are the amplitude of magnetic field and current respectively.
So, i0 = √2Irms = 6.96 × 1.414 μA = 9.76μA
Given, r = 3 cm, R = 6cm
B0 = \(\frac{\mu_{0} r i_{0}}{2 \pi R^{2}}\)
= \(\frac{10^{-7} \times 2 \times 3 \times 10^{-2} \times 9.76 \times 10^{-6}}{(6)^{2} \times\left(10^{-2}\right)^{2}}\)
= 1.633 × 10-11 T

Question 3.
What physical quantity is the same for X-rays of wavelength 10-10 m, red light of wavelength 6800 Å and radiowaves of wavelength 500 m?
Answer:
X-rays, red light and radiowaves all are the electromagnetic waves. They have different wavelengths and frequencies. But the physical quantity which is same for all of these is the velocity of light in vacuum which is denoted by c and is equal to 3 × 108 ms-1 W

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 4.
A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?
Answer:
In an electromagnetic wave’s propagation vector \(\vec{K}\), electric field vector \(\vec{E}\) and magnetic field vector \(\vec{K}\) form a right handed system. As the propagation vector is along Z-direction, electric field vector will be along X-direction and magnetic field vector will be along Y-direction.
Frequency v = 30 MHz = 30 × 106Hz
Speed of light c = 3 × 108 ms-1
Wavelength, λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{30 \times 10^{6}}\) = 10 m

Question 5.
A radio can tune in to any station in the 7.5 MHz to 12 MHz hand. What is the corresponding wavelength band?
Answer:
Speed of wave c = 3 × 108 ms-1
When frequency, V1 = 7.5MHz = 7.5 × 106 Hz
Wavelength, λ1 = \(\frac{c}{v_{1}}\) = \(\frac{3 \times 10^{8}}{7.5 \times 10^{6}}\) = 40m
When frequency, V2 12 MHZ = 12 × 106HZ
Wavelength, λ2 = \(\frac{c}{v_{2}}\) = \(\frac{3 \times 10^{8}}{12 \times 10^{6}}\) = 25m
Wavelength band is from 25 m to 40 m.

Question 6.
A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?
Answer:
According to Maxwell’s theory, an oscillating charged particle with a frequency v radiates electromagnetic waves of frequency v.
So, the frequency of electromagnetic waves produced by the oscillator is v = 109 Hz.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 7.
The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is B0 =510 nT. What is the amplitude of the electric field part of the wave?
The relation between magnitudes of magnetic and electric field vectors in vacuum is
\(\frac{E_{0}}{B_{0}}\) = c
⇒ E0 = B0C
Here, B0 = 510 × 10-9T, c = 3 × 108 ms-1
E0 = 510 × 10-9 × 3 × 108 = 153N/C

Question 8.
Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is v = 50.0 MHz. (a) Determine, B0, ω, k and λ. (b) Find expressions for E and B.
Answer:
Electric field amplitude, E0 = 120 N/C
Frequency of source, v = 50.0 MHz = 50 × 106 Hz
Speed of light, c = 3 × 108 m/s

(a) Magnitude of magnetic field strength is given as
B0 \(\frac{E_{0}}{\mathcal{C}}\) = \(\frac{120}{3 \times 10^{8}}\)
40 × 10-8T
= 400 × 10-9 T
= 400 nT
Angular frequency of source is given as
ω = 2πv = 2π × 50 × 106
= 3.14 × 108 rad/s
Propagation constant is given as
k = \(\frac{\omega}{c}\) = \(\frac{3.14 \times 10^{8}}{3 \times 10^{8}}\) = 1.05 rad /m
Wavelength of wave is given us
λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{50 \times 10^{6}}\) = 6.0m

(b) Suppose the wave is propagating in the positive x direction. Then, the electric field vector will be in the positive y direction and the magnetic field vector will be in the positive z direction. This is because all three vectors are mutually perpendicular.
Equation of electric field vector is given as
\(\vec{E}\) = E0sin (kx – ωt) ĵ
= 120 sin [1.05 x – 3.14 × 108t] ĵ
And, magnetic field vector is given as
\(\vec{B}\) = B0 sin (kx – ωt)k̂
\(\vec{B}\) = (4 × 10-7)sin[1.05 x – 3.14 × 108t]k̂

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 9.
The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E – hv (for energy of a quantum of radiation : photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Answer:
Energy of a photon is given as
E = hv = \(\frac{h c}{\lambda}\)
where,
h = Planck’s constant = 6.6 × 10-34 Js
c = Speed of light = 3 × 108 m/s
λ = Wavelength of radiation
∴ E = \(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}\) = \(\frac{19.8 \times 10^{-26}}{\lambda}\) = J
= \(\frac{19.8 \times 10^{-26}}{\lambda \times 1.6 \times 10^{-19}}\) = \(\frac{12.375 \times 10^{-7}}{\lambda}\) = eV
The given table lists the photon energies for different parts of an electromagnetic spectrum for different λ.
PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves 3
The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source.

Question 10.
In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010Hz and amplitude 48 Vm-1.
(a) What is the wavelength of the wave?
(b) What is the amplitude of the oscillating magnetic field?
(c) Show that the average energy density of the E field equals the average energy density of the B field, [c = 3 × 108 ms-1]
Answer:
Frequency of the electromagnetic wave, v = 2.0 × 1010 Hz
Electric field amplitude, E0 = 48 V m-1
Speed of light, c = 3 × 108 m/s

(a) Wavelength of the wave is given as
λ = \(\frac{\mathcal{C}}{\mathrm{v}}\) = \(\frac{3 \times 10^{8}}{2 \times 10^{10}}\) 0.015 m

(b) Magnetic field strength is given as
B0 = \(\frac{E_{0}}{c}\)
= \(\frac{48}{3 \times 10^{8}}\) = 1.6 × 10-7 T

(c) Let UE and UB be the energy density of \(\) field and \(\) field respectively. Energy density of the electric field is given as
UE = \(\frac{1}{2}\) ε0E2
And, energy density of the magnetic field is given as
UB = \(\frac{1}{2 \mu_{0}}\)2
We have the relation connecting E and B as
E = cB ………….. (1)
where,
c = \(\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}\) ……………. (2)
Putting equation (2) in equation (1), we get
E = \(\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}\)B
Squaring both sides, we get
E2 = \(\frac{1}{\varepsilon_{0} \mu_{0}}\) B2
ε0E2 = \(\frac{B^{2}}{\mu_{0}}\)
\(\frac{1}{2}\)ε0E2 = \(\frac{1}{2} \frac{B^{2}}{\mu_{0}}\)
⇒ UE = EB

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 11.
Suppose that the electric field part of an electromagnetic wave in vacuum is
E = {(3.1 N/C) cos [(1.8 rad/m) y + (5.4 × 106 rad/s) t]}î
(a) What is the direction of propagation?
(b) What is the wavelength λ ?
(c) What is the frequency v?
(d) What is the amplitude of the magnetic field part of the wave?
(e) Write an expression for the magnetic field part of the wave.
Answer:
(a) Wave is propagating along negative y-axis.

(b) Standard equation of wave is \(\vec{E}\) = E0 cos(ky + cot)î
Comparing the given equation with standard equation, we have
E0 = 3.1 N/C, k = 1.8 rad/m, ω = 5.4 × 106 rad/s
Propagation constant k = \(\frac{2 \pi}{\lambda}\)
∴ λ = \(\frac{2 \pi}{k}\) = \(\frac{2 \times 3.14}{1.8}\) m = 3.49 m

(c) We have ω = 5.4 × 106 rad/s
Frequency, v = \(\frac{\omega}{2 \pi}\) = \(\frac{5.4 \times 10^{6}}{2 \times 3.14}\) Hz
= 8.6 × 105 Hz

(d) Amplitude of magnetic field,
B0 = \(\frac{E_{0}}{c}\) = \(\frac{3.1}{3 \times 10^{8}}\) = 1.03 × 10-8 T

(e) The magnetic field is vibrating along Z-axis because \(\vec{K}\),\(\vec{E}\),\(\vec{B}\) form a right handed system -ĵ × î = k̂
> Expression for magnetic field is
\(\vec{B}\) = B0 cos(ky+ ωt)k̂
= [1.03 × 10-8Tcos{(1.8rad / m) y +(5.4 × 6 rad/s)t}]k̂

Question 12.
About 5% of the power of a 100 W light bulb is converted to visible radiation. What is the average intensity of visible radiation
(a) at a distance of 1 m from the bulb?
(b) at a distance of 10 m?
Assume that the radiation is emitted isotropically and neglect reflection.
Answer:
Power in visible radiation, P = \(\frac{5}{100}\) × 100 = 5W
For a point source, intensity I = \(\frac{P}{4 \pi r^{2}}\), where r is distance from the source.

(a) When distance r = 1 m,
I = \(\frac{5}{4 \pi(1)^{2}}=\frac{5}{4 \times 3.14}\) = 0.4 W/m2

(b) When distance r = 10 m,
I = \(\frac{5}{4 \pi(10)^{2}}=\frac{5}{4 \times 3.14 \times 100}\)
= 0.004 W/m2

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 13.
Use the formula λm T = 0.29 cm K to obtain the characteristic temperature ranges for different parts of the electromagnetic spectrum. What do the numbers that you obtain tell you?
Answer:
A body at a particular temperature produces a continuous spectrum of wavelengths. In case of a black body, the wavelength corresponding to maximum intensity of radiation is given according to Planck’s law. It can be given by the relation,
λm = \(\frac{0.29}{T}\) cm K
where, λm = maximum wavelength
T = temperature
Thus, the temperature for different wavelengths can be obtained as
For λm = 10-4 cm; T = \(\frac{0.29}{10^{-4}}\) = 2900°K
For λm = 5 × 10-5 cm; T = \(\frac{0.29}{5 \times 10^{-5}}\) = 5800°K
For λm = 10-6 cm; T = \(\frac{0.29}{10^{-6}}\) = 290000 °K and so on.

The numbers obtained tell us that temperature ranges are required for obtaining radiations in different parts of an electromagnetic spectrum. As the wavelength decreases, the corresponding temperature increases.

Question 14.
Given below are some famous numbers associated with electromagnetic radiations in different contexts in physics. State the part of the electromagnetic spectrum to which each belongs.
(a) 21 cm (wavelength emitted by atomic hydrogen in interstellar space).

(b) 1057 MHz (frequency of radiation arising from two close energy levels in hydrogen; known as Lamb shift).

(c) 2.7 K (temperature associated with the isotropic radiation filling all space-thought to be a relic of the ‘big-bang’ origin of the universe).

(d) 5890 Å – 5896 Å (double lines of sodium).

(e) 14.4 keV [energy of a particular transition in 57 Fe nucleus associated with a famous high resolution spectroscopic method (Mossbauer spectroscopy)].
Answer:
(a) 21 cm belongs to short wavelength end of radiowaves (or Hertizan waves).

(b) Wavelength, λ = \(\frac{c}{v}\) = \(\frac{3 \times 10^{8}}{1057 \times 10^{6}}\) = 0.28 m = 28 cm.
This also belongs to short wavelength end of radiowaves.

(c) From relation λmT = 0.29 × 10-2 K,
λm = \(\frac{0.29 \times 10^{-2} \mathrm{~K}}{T}=\frac{0.29 \times 10^{2}}{2.7}\)
= 0.107 × 10-2m= 0.107 cm.
This corresponds to microwaves.

(d) Wavelength doublet 5890Å – 5896Å belongs to the visible region. These are emitted by sodium vapour lamp.

(e) From relation, E = \(\frac{h c}{\lambda}\)
we have λ = \(\frac{h c}{E}\)
λ = \(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{14.4 \times 10^{3} \times 1.6 \times 10^{-19}} \mathrm{~m}\)
= 0.86 × 10-10 m = 0.86 Å
It belongs to the X-ray region of electromagnetic spectrum.

PSEB 12th Class Physics Solutions Chapter 8 Electromagnetic Waves

Question 15.
Answer the following questions :
(a) Long distance radio broadcasts use short-wave bands. Why?

(b) It is necessary to use satellites for long distance TV transmission. Why?

(c) Optical and radiotelescopes are built on the ground but X-ray astronomy is possible only from satellites orbiting the earth Why?

(d) The small ozone layer on top of the stratosphere is crucial for human survival. Why?

(e) If the earth did not have an atmosphere, would its average surface temperature be higher or lower than what it is now?

(f) Some scientists have predicted that a global nuclear war on the earth would be followed by a severe ‘nuclear winter’ with a devastating effect on life on earth. What might be the basis of this prediction?
Answer:
(a) Long distance radio broadcasts use short-wave bands because only these bands can be refracted by the ionosphere.

(b) Yes, it is necessary to use satellites for long distance TV transmissions because television signals are of high frequencies and high energies. Thus, these signals are not reflected by the ionosphere. Hence, satellites are helpful in reflecting TV signals. Also, they help in long distance TV transmissions.

(c) With reference to X-ray astronomy, X-rays are absorbed by the atmosphere. However, visible and radiowaves can penetrate it. Hence, optical and radiotelescopes are built on the ground, while X-ray astronomy is possible only with the help of satellites orbiting the Earth.

(d) The small ozone layer on the top of the stratosphere is crucial for human survival because it absorbs harmful ultraviolet radiations present in sunlight and prevents it from reaching the Earth’s surface.

(e) In the absence of an atmosphere, there would be no greenhouse effect on the surface of the Earth. As a result, the temperature of the Earth would decrease rapidly, making it chilly and difficult for human survival.

(f) A global nuclear war on the surface of the Earth would have disastrous consequences. Post nuclear war, the Earth will experience severe winter as the war will produce clouds of smoke -that would cover maximum parts of the sky, thereby preventing solar light form reaching the atmosphere. Also, it will lead to the depletion of the ozone layer.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 10 Haloalkanes and Haloarenes Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 10 Haloalkanes and Haloarenes

PSEB 12th Class Chemistry Guide Haloalkanes and Haloarenes InText Questions and Answers

Question 1.
Name the following halides according to IUPAC system and classify them as alkyl, allyl, benzyl (primary, secondary, tertiary), vinyl or aryl halides:
(i) (CH3)2CHCH(Cl)CH3
(ii) CH3CH2CH(CH3)CH(C2H5)Cl
(iii) CH3CH2C(CH3)2CH2I
(iv) (CH3)3CCH2CH(Br)C6H5
(v) CH3CH(CH3)CH(Br)CH3
(vi) CH3C(C2H5)2CH2Br
(vii) CH3C(Cl)(C2H5)CH2CH3
(viii) CH3CH=C(Cl)CH2CH(CH3)2
(ix) CH3CH=CHC(Br)(CH3)2
(x) p-ClC6H4CH2CH(CH3)2
(xi) m-ClCH2C6H4CH2C(CH3)3
(xii) o-Br-C6H4CH(CH3)CH2CH3
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 1
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 2

Question 2.
Give the IUPAC names of the following compounds:
(i) CH3CH(Cl)CH(Br)CH3
(ii) CHF2CBrClF
(iii) ClCH2C ☰ CCH2Br
(iv) (CCl3)3CCl
(v) CH3C(p-ClC6H4)2CH(Br)CH3
(vi) (CH3)3CCH=CClC6H4I-p
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 3

Question 3.
Write the structures of the following organic halogen compounds.
(i) 2-Chloro-3-methylpentane
(ii) p -Bromochlorobenzene
(iii) 1-Chloro-4-ethylcyclohexane
(iv) 2-(2-Chlorophenyl)-l-iodooctane
(v) 2 -Bromobutane
(vi) 4-terf-Butyl-3-iodoheptane
(vii) l-Bromo-4-sec-butyl-2-methylbenzene
(viii) 1,4-Dibromobut-2 -ene
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 4
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 5

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 4.
Which one of the following has the highest dipole moment?
(i) CH2Cl2
(ii) CHCl3
(iii) CCl4
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 6
1. CCl4 is a symmetrical molecule. Therefore, the dipole moments of all four C—Cl bonds cancel each other. Hence, its resultant dipole moment is zero.

2. As shown in the above figure, in CHCl3, the resultant of dipole moments of two C—Cl bonds is opposed by the resultant of dipole moments of one C—H bond and one C—Cl bond. Since the resultant of one C—H bond and one C—Cl bond dipole moments is smaller than two C—Cl bonds, the opposition is to a small extent. As a result, CHC13 has a small dipole moment of 1.08 D.

3. On the other hand, in case of CH2Cl2, the resultant of the dipole moments of two C—Cl bonds is strengthened by the resultant of the dipole moments of two C—H bonds. As a result, CH2C12 has a higher dipole moment of 1.60 D than CHCl3 i.e., CH2Cl2 has the highest dipole moment.
Hence, the given compounds can be arranged in the increasing order of their dipole moments as:
CCl4 < CHCl3 < CH2Cl2

Question 5.
A hydrocarbon C5H10 does not react with chlorine in dark but gives a single monochloro compound C5H9Cl in bright sunlight. Identify the hydrocarbon.
Answer:
CO The hydrocarbon with molecular formula C5H10 can be either a cycloalkane or an alkene.

Since, the hydrocarbon does not react with Cl2 in the dark, it cannot be an alkene but must be a cycloalkane.
As the cycloalkane reacts with Cl2 in the presence of bright sunlight, to give a single monochloro compound, C5H9Cl, therefore all the ten hydrogen atoms of the cycloalkane must be equivalent. Therefore, the cycloalkane is cyclopentane.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 7

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 6.
Write the isomers of the compound having formula C4H9Br.
Answer:
There are four isomers of the compound having the formula C4H9Br.
These isomers are given below:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 8

Question 7.
Write the equations for the preparation of 1-iodobutane from
(i) 1-butanol
(ii) 1-chlorobutane
(iii) but-l-ene.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 9

Question 8.
What are ambident nucleophiles? Explain with an example.
Answer:
Ambident nucleophiles are nucleophiles having two nucleophilic sites. Thus, ambident nucleophiles have two sites through which they can attack.
For example, nitrite ion is an ambident nucleophile.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 10
Nitrite ion can attack through oxygen resulting in the formation of alkyl nitrites. Also, it can attack through nitrogen resulting in the formation of nitroalkanes.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 11

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 9.
Which compound in each of the following pairs will react faster in Sn2 reaction with OH?
(i) CH3Br or CH3I
(ii) (CH3)3CCl or CH3Cl
Answer:
(i) Since I ion is a better leaving group than Br ion, hence CH3I reacts faster than CH3Br in SN2 reaction with OH ion.

(ii) On steric grounds, 1° alkyl halides are more reactive than tert-alkyl halides in SN 2 reactions. Hence, CH3Cl will react at a faster rate than (CH3)3 CCl in a SN2 reaction with OH ion.

Question 10.
Predict all the alkenes that would be formed by dehydrohalogenation of the following halides with sodium ethoxide in ethanol and identify the major alkene:
(i) 1 -Bromo-1-methylcyclohexane
(ii) 2-Chloro-2-methylbutane
(iii) 2, 2, 3-Trimethyl-3-hromopentane.
Answer:
(i) In 1 -bromo-1 -methylcyclohexane, the β-hydrogens on either side of the Br atom are equivalent, therefore, only 1-alkene is formed.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 12

(ii) All p-hydrogens in 2-chloro-2-methylbutane are not equivalent, hence on treatment with C2H5ONa/C2H5OH, it gives two alkenes.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 13

(iii) 2, 2, 3-Trimethyl-3-bromopentane has two different sets of p-hydrogen and therefore, in principle, can give two alkenes (I and II). But according to Saytzeff rule, more highly substituted alkene (II), being more stable is the major product.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 14

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 11.
How will you bring about the following conversions?
(i) Ethanol to but-1-yne
(ii) Ethane to bromoethene
(iii) Propene to 1 -nitropropane
(iv) Toluene to benzyl alcohol
(v) Propene to propynt
(vi) Ethanol to ethyl fluoride
(vii) Bromomethane to propanone
(viii) But-l-ene to but-2-ene
(ix) 1-Chlorobutane to n-octane
(x) Benzene to biphenyl.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 15
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 16
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 17

Question 12.
Explain why
(i) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride ?
(ii) Alkyl halides, though polar are immiscible with water ?
(iii) Grignard reagents should be prepared under anhydrous conditions ?
Answer:
(i) Because of greater s-character, an sp2-hybrid carbon is more electronegative than an sp3-hybrid carbon. Thus, the sp2-hybrid carbon of C—Cl bond in chlorobenzene has less tendency to release electrons to Cl than an sp3-hybrid carbon of cyclohexyl chloride.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 18
Hence, the C—Cl bond in chlorobenzene is less polar than that in cyclohexyl chloride. In other words, the magnitude of negative charge is less on Cl atom of chlorobenzene than in cyclohexyl chloride. Now, due to delocalisation of lone pairs of electrons of the Cl atom over the benzene ring, C—Cl bond in chlorobenzene acquires some double character while the C—Cl bond in cyclohexyl chloride is a pure single bond. Thus, C—Cl bond in chlorobenzene is shorter than in cyclohexyl chloride.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 19
As dipole moment is a product of charge and distance, chlorobenzene has lower dipole moment than cyclohexyl chloride due to lower magnitude of negative charge on the Cl atom and shorter C—Cl distance.

(ii) Alkyl halides, though polar, are immiscible in water because they are unable to form hydrogen bonds with water molecules.

(iii) Grignard reagents are very reactive. They react with moisture present in the apparatus or the starting materials to give hydrocarbons.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 20
Hence, Grignard reagent must be prepared under anhydrous conditions.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 13.
Give the uses of freon 12, DDT, carbon tetrachloride and iodoform.
Answer:
Uses of Freon-12(CCl2F2)

  1. It is used as a refrigerant in refrigerators and air conditioners.
  2. It is also used in aerosol spray propellants such as body sprays, hair sprays.

Uses of DDT (p, p’-dichlorodiphenyltrichloroethane)

  1. It is very effective against mosquitoes and lice.
  2. It is also used in many countries as insecticide for sugarcane and fodder crops. (But due to its harmful effects, its use has been banned in many contries including U.S.A.

Uses of Carbontetrachloride (CCl4)

  1. It is used for manufacturing refrigerants and propellants for aerosol cAnswer:
  2. It is used as feedstock in the synthesis of chlorofluorocarbons and other chemicals.
  3. It is used as a solvent in the manufacture of pharmaceutical products. Until the mid 1960’s, carbon tetrachloride was widely used as a cleaning fluid, a degreasing agent in industries, a spot reamer in homes, and a fire extinguisher.

Uses of Iodoform (CHI3)
Iodoform was used earlier as an antiseptic, but now it has been replaced by other formulations-containing iodine-due to its objectionable smell. The antiseptic property of iodoform is only due to the liberation of free iodine when it comes in contact with the skin.

Question 14.
Write the structure of the major organic product in each of the following reactions
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 21
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 22
(v) C6H5ONa + C2H6Cl →
(vi) CH3CH2CH2OH + SOCl2
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 23
(viii) CH3CH = C(CH3)2 + HBr →
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 24

Question 15.
Write the mechanism of the following reaction
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 25
Answer:
The given reaction is
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 26
The given reaction is an SN2 reaction. In this reaction, CN acts as the nucleophile and attacks the carbon atom to which Br is attached. CN ion is an ambident nucleophile and can attack through both C and N. In this case, it attacks through the C-atom.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 27

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 16.
Arrange the compounds of each set in order of reactivity towards SN2 displacement
(i) 2-Bromo-2-methylbutane, 1 -Bromopentane, 2-Bromopentane
(ii) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 3-Bromo- 2-methylbutane
(iii) 1-Bromobutane, l-Bromo-2, 2-dimethylpropane, 1-Bromo -2-methylbutane, 1-Bromo-3-methylbutane.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 28

Question 17.
Out of C6H5CH2Cl and C6H5CHClC6H5, which is more easily hydrolysed by aqueous KOH?
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 29
In SN1 reaction, reactivity depends upon the stability of carbocations. PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 30 carbocation is more stable as compared to PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 31. Therefore, C6H5CHClC6H5 gets hydrolysed more easily than C6H5CHCl.

Question 18.
p-Dichlorobenzene has higher m.p. and lower solubility than those of o- and m-isomers. Discuss.
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 32
p-Dichlorobenzene is more symmetrical than o-and m-isomers. For this reason, it fits more closely than o-and m-isomers in the crystal lattice. Therefore, more energy is required to break the crystal lattice of p-dichlorobenzene. As a result, p-dichlorobenzene has a higher melting point and lower solubility than o-and m-isomers.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 19.
How the following conversions can be carried out?
(i) Propene to propan-l-ol
(ii) Ethanol to but-l-yne
(iii) 1-Bromopropane to 2-bromopropane
(iv) Toluene to benzyl alcohol
(v) Benzene to 4-bromonitrobenzene
(vi) Benzyl alcohol to 2-phenylethanoic acid
(vii) Ethanol to propanenitrile
(viii) Aniline to chlorobenzene
(ix) 2-Chlorobutane to 3, 4-dimethylhexane
(x) 2-Methyl- 1-propene to 2-chloro-2-methylpropane
(xi) Ethyl chloride to propanoic acid
(xii) But-l-ene to n-butyliodide
(xiii) 2-Chloropropane to 1-propanol
(xiv) Isopropyl alcohol to iodoform
(xv) Chlorobenzene to p-nitrophenol
(xvi) 2-Bromopropane to 1-bromopropane
(xvii) Chloroethane to butane
(xviii) Benzene to diphenyl
(xix) tert-Butyl bromide to isobutyl bromide
(xx) Aniline to phenylisocyanide
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 33
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 34
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 35
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 36
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 37
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 38
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 39

Question 20.
The treatment of alkyl chlorides with aqueous KOH leads to the formation of alcohols but in the presence of alcoholic KOH, alkenes are major products. Explain.
Answer:
In an aqueous solution, KOH almost completely ionises to give OH ions. OH ion is a strong nucleophile, which leads the alkyl chloride to undergo a substitution reaction to form alcohol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 40
On the other hand, an alcoholic solution of KOH contains alkoxide (RO) ion, which is a strong base. Thus, it can abstract a hydrogen from the p carbon of the alkyl chloride and form an alkene by eliminating a molecule of HCl.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 41
OH ion is a much weaker base than RO ion. Also, OH ion is highly solvated in an aqueous solution and as a result, the basic character of OH ion decreases. Therefore, it cannot abstract a hydrogen from the β carbon.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 21.
Primary alkyl halide C4H9Br (A) reacted with alcoholic KOH to give compound (B).Compound (B) is reacted with HBr to give (C) which is an isomer of (A). When (A) is reacted with sodium metal it gives compound (D), C8H18 which is different from the compound formed when n-butyl bromide is reacted with sodium. Give the structural formula of (A) and write the equations for all the reactions.
Answer:
There are two primary alkyl halides having the formula, C4H9Br. They are n-butyl bromide and isobutyl bromide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 42
Therefore, compound (A) is either n-butyl bromide or isobutyl bromide. Now, compound (A) reacts with Na metal to give compound (B) of molecular formula, C8H18 which is different from the compound formed when n-butyl bromide reacts with Na metal. Hence, compound (A) must be isobutyl bromide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 43

Question 22.
What happens when
(i) n-butyl chloride is treated with alcoholic KOH,
(ii) bromobenzene is treated with Mg in the presence of dry ether,
(iii) chlorobenzene is subjected to hydrolysis,
(iv) ethyl chloride is treated with aqueous KOH,
(v) methyl bromide is treated with sodium in the presence of dry ether
(vi) methyl chloride is treated with KCN.
Answer:
(i) When n-butyl chloride is treated with alcoholic KOH, the formation of but-l-ene takes place. This reaction is a dehydrohalogenation reaction.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 44

(ii) When bromobenzene is treated with Mg in the presence of dry ether, phenylmagnesium bromide is formed.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 45

(iii) Chlorobenzene does not undergo hydrolysis under normal conditions. However, it undergoes hydrolysis when heated in an aqueous sodium hydroxide solution at a temperature of 623 K and a pressure of 300 atm to form phenol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 59

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 46

(iv) When ethyl chloride is treated with aqueous KOH, it undergoes hydrolysis to form ethanol.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 47

(v) When methyl bromide is treated with sodium in the presence of dry ether, ethane is formed. This reaction is known as the Wurtz reaction.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 48

(vi) When methyl chloride is treated with KCN, it undergoes a substitution reaction to give methyl cyanide.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 49

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Chemistry Guide for Class 12 PSEB Haloalkanes and Haloarenes Textbook Questions and Answers

Question 1.
Write structures of the following compounds :
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert-butyl-3-iodoheptane
(iv) 1-4-Dibromobut-2-ene
(v) 1-Bromo-4-sec-butyl-2-methylbenzene
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 50

Question 2.
Why is sulphuric acid not used during the reaction of alcohols with KI?
Answer:
H2SO4 cannot be used along with KI in the conversion of an alcohol to an alkyl iodide as it converts KI to corresponding HI and then oxidises it to I2.

Question 3.
Write structures of different dihalogen derivatives of propane.
Answer:
(i) ClCH2CH2CH2Cl
(ii) ClCH2CHClCH3
(iii) Cl2CHCH2CH3
(iv) CH3CCl2CH3

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 4.
Among the isomeric alkanes of molecular formula C5H12 identify the one that on photochemical chlorination yields :
(i) A single monochloride
(ii) Three isomeric monochlorides
(iii) Four isomeric monochlorides
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 51
All the hydrogen atoms are equivalent and replacement of any hydrogen will give the same product.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 52
The equivalent hydrogens are grouped as a, b and c. The replacement of equivalent hydrogens will give the same product. Thus, three isomeric products are possible.

(iii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 53
The equivalent hydrogens are grouped as a, b, c and d. Thus, four isomeric products are possible.

Question 5.
Draw the structures of major monohalo products in each of the following reactions:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 54
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 55

Question 6.
Arrange each set of compounds in the order of increasing boiling points.
(i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.
(ii) 1-Chloropropane, Isopropyl chloride, 1 -Chlorobutane.
Answer:
(i) Chloromethane < Bromomethane < Dibromomethane < Bromoform. Boiling point increases with increase in molecular mass.

(ii) Isopropyl chloride < 1-Chloropropane < 1-Chlorobutane. Isopropyl chloride being branched has lower boiling point than 1-Chloropropane.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 7.
Which alkyl halide from the following pairs would you expect to react more rapidly by an SN2 mechanism ? Explain your answer.
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 56
Answer:
(i) CH3CH2CH2CH2Br
Being primary halide, there won’t be any steric hindrance.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 57
Being a secondary halide, there will be less crowding around α-carbon than tertiary halide.

(iii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 58
The presence of methyl group closer to the halide group will increase the steric hindrance and decrease the rate.

Question 8.
In the following pairs of halogen compounds, which compound undergoes faster SN1 reaction ?
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 59
Answer:
(i) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 60
2-Chloro-2-methylpropane as the tertiary carbocation is more stable than secondary carbocation.

(ii) PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 61
2-Chloroheptane as the secondary carbocation is more stable than primary carbocation.

PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes

Question 9.
Identify A, B, C, D, E, R and R’ in the following:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 62
Answer:
PSEB 12th Class Chemistry Solutions Chapter 10 Haloalkanes and Haloarenes 63

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Punjab State Board PSEB 12th Class Chemistry Book Solutions Chapter 4 Chemical Kinetics Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Chemistry Chapter 4 Chemical Kinetics

PSEB 12th Class Chemistry Guide Chemical Kinetics InText Questions and Answers

Question 1.
From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
(i) 3 NO(g) → N2O(g) Rate = k[NO]2
(ii) H2O2 (aq) +3I (aq) + 2H+ → 2H2O (l) + \(\mathbf{I}_{3}^{-}\)
Rate = k[H2O2] [I]
(iii) CH3CHO(g) → CH4(g) + CO(g) Rate = k [CH3CHO]3/2
(iv) C2H5Cl(g) → C2H4(g) + HCl (g) Rate = k [C2H5Cl]
Solution:
(i) Given, rate = k [NO]2
Therefore, order of the reaction = 2
Dimension of rate constant (k) = \(\frac{\text { Rate }}{[\mathrm{NO}]^{2}}\)
= \(\frac{m o l L^{-1} s^{-1}}{\left(m o l L^{-1}\right)^{2}}\)
= \(\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{2} \mathrm{~L}^{-2}}\)
= L mol-1 s-1

(ii) Given, rate = k [H2O2] [I ]
Therefore, order of the reaction = 2
Dimension of k = \(\frac{\text { Rate }}{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]}\)
= \(\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)\left(\mathrm{mol} \mathrm{L}^{-1}\right)}\)
= L mol-1 s-1

(iii) Given rate = k[CH3CHO]3/2
Therefore, order of the reaction = \(\frac{3}{2}\)
Dimension of k = \(\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}}\)
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 9
= \(\frac{\text { mol L }^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol}^{\frac{3}{2}} \mathrm{~L}^{-\frac{3}{2}}}\)
= mol -1/2L1/2 s-1

(iv) Given, rate = k [C2H5Cl]
Therefore, order of the reaction = 1
Dimension of k = \(\frac{\text { Rate }}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]}\)
= \(\frac{\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{~L}^{-1}}\) = s-1

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 2.
For the reaction:
2A + B → A2B
the rate = k[A] [B]2 with k = 2.0 x 10-6 mol-2L2s-1. Calculate the initial rate of the reaction when [A] = 0.1 mol L-1, [B] = 0.2 mol L-1. Calculate the rate of reaction after [A] is reduced to 0.06 mol L-1.
Solution:
The initial rate of the reaction is
Rate = k [A][B]2
= (2.0 × 10-6 mol-2 L2 s-1) (0.1 mol L-11) (0.2 mol L-1 )2
= 8.0 × 10-9 mol L-1 s-1
When [A] is reduced from 0.1 mol L-1 to 0.06 molL-1, the concentration of A reacted = (0.1 – 0.06) mol L-1 = 0.04 mol L-1 Therefore, concentration of B reacted
= \(\frac{1}{2}\) × 0.04 mol L-1 = 0.02 mol L-1
Then, concentration of B available, [B] = (0.2 -0.02) mol L-1
= 0.18 mol L-1
After [A] is reduced to 0.06 mol L-1, the rate of the reaction is given by,
Rate = k [A][B]2
= (2.0 × 10-6 mol-2 L2 s-1) (0.06 mol L-1) (0.18 mol L-1)2
= 3.89 × 10-9 mol L-1 s-1

Question 3.
The decomposition of NH3 on platinum surface is zero order reaction. What are the rates of production of N2 and H2 if k = 2.5 x 10-4 mol-1 L s-1?
Solution:
The decomposition of NH3 on platinum surface is represented by the following equation
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 1
For zero order reaction, rate = k
∴ \(-\frac{1}{2} \frac{d\left[\mathrm{NH}_{3}\right]}{d t}=\frac{d\left[\mathrm{~N}_{2}\right]}{d t}=\frac{1}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}\)
= 2.5 × 10-4 mol L-1 s-1
Therefore, the rate of production of N2
\(\frac{d\left[\mathrm{~N}_{2}\right]}{d t}\) = 2.5 × 10-4 mol L-1 s-1
The rate of production of H2
\(\frac{d\left[\mathrm{H}_{2}\right]}{d t}\) = 3 × 2.5 × 10-4 mol L-1 s-1
= 7.5 × 10-4 mol L-1 s-1

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 4.
The decomposition of dimethyl ether leads to the formation of CH4, H2 and CO and the reaction rate is given by
Rate = k [CH3OCH3]3/2
The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,
Rate = k(PCH3OCH3 )3/2
If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?
Solution:
If the pressure is measured in bar and time in minutes, then
Unit of rate = bar min-1
Rate = k(PCH3OCH3 )3/2
⇒ k = \(\frac{\text { Rate }}{\left(p_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}\right)^{3 / 2}}\)
= PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 10

Question 5.
Mention the factors that affect the rate of a chemical reaction.
Answer:
The factors that affect the rate of a chemical reaction are as follows :
(i) Nature of reactants: Ionic substances react more rapidly than covalent compounds because ions produced after dissociation are immediately available for reaction.

(ii) Concentration of reactants: Rate of a chemical reaction is direcdy proportional to the concentration of reactants.

(iii) Temperature: Generally rate of a reaction increases on increasing the temperature.

(iv) Presence of catalyst: In presence of catalyst, the rate of reaction generally increase and the equilibrium state is attained quickly in reversible reactions.

(v) Surface area of the reactants: Rate of reaction increases with increase in surface area of the reactants. That is why powdered form of reactants is preffered than their granular form.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 6.
A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is (i) doubled (ii) reduced to half?
Solution:
Let the concentration of the reactant be [A] = a
Rate of reaction, R = k [A]2 = ka2
(i) If the concentration of the reactant is doubled, i.e. [A] = 2a, then the rate of the reaction would be
R’ = k (2a)2
= 4ka2 = 4R
Therefore, the rate of the reaction would increase by 4 times.

Question 7.
What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?
Answer:
The rate constant is nearly doubled with a rise in temperature by 10° for a chemical reaction.

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation, k = Ae-Ea/RT

Where, k is the rate constant, A is the Arrhenius factor or the frequency factor, R is the gas constant, T is the temperature, and Ea is the energy of activation for the reaction.

Question 8.
In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s 0 30 60 90
[Ester]/molL-1 0.55 0.31 0.17 0.085

(i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
(ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.
Solution:
(i) Average rate of reaction between the time interval, 30 to 60 seconds
= \(\frac{d[\text { Ester }]}{d t}\)
= \(\frac{0.31-0.17}{60-30}\)
= \(\frac{0.14}{30}\)
= 4.67 × 10-3 mol L-1 s-1
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 2

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 9.
A reaction is first order in A and second order in B.
(i) Write the differential rate equation.
(ii) How is the rate affected on increasing the concentration of B three times?
(iii) How is the rate affected when the concentrations of both A and B are doubled?
Solution:
(i) The differential rate equation will be
– \(\frac{d[\mathrm{R}]}{d t}\) = k[A][B]2

(ii) If the concentration of B is increased three times, then
– \(\frac{d[\mathrm{R}]}{d t}\) = k[A][3B]2
= 9.k [A][B]2
Therefore, the rate of reaction will increase 9 times.

(iii) When the concentrations of both A and B are doubled,
– \(\frac{d[\mathrm{R}]}{d t}\) = k[2A][2B]2
= 8.k [A] [B]2
Therefore, the rate of reaction will increase 8 times.

Question 10.
In a reaction between A and B, the initial rate of reaction (r0) was measured for different initial concentrations of A and B as given below:

A/mol L-1 0.20 0.20 0.40
B/mol L-1 0.30 0.10 0.05
r0/mol L-1 s-1 5.07 × 10-5 5.07 × 105 1.43 × 10-4

What is the order of the reaction with respect to A and B?
Solution:
Let the order of the reaction with respect to A be x and with respect to B be y.
Therefore
r0 = k [A]x [B]y
5.07 × 10-5 = k[0.20]x [0.30]y …………. (i)
5.07 × 10-5 = k[0.20]x [0.10]y …………. (ii)
1.43 × 10-4 = k[0.40]x [0.05]y ……….. (iii)
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 3
Hence, the order of the reaction with respect to A is 1.5 and with respect to B is 0.

Question 11.
The following results have been obtained during the kinetic studies of the reaction:
2A + B → C + D
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 11
Determine the rate law and the rate constant for the reaction.
Solution:
Let the order of the-reaction with respect to A be x and with respect to B be y.
Therefore, rate of the reaction is given by,
Rate = k [A]x [B]y According to the question,
6.0 × 10-3; = k[0.1]x [0.1]y …………. (i)
7.2 × 10-2 = k[0.3]x [0.2]y …………… (ii)
2.88 × 10-1 = k[0.3]x [0.4]y ………….. (iii)
2.40 × 10-2 = k[0.4]x [0.1]y …………… (iv)
Dividing equation (iv) by (i), we get
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 4
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 5

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 12.
The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 12
Solution:
The given reaction is of the first order with respect to A and of zero order with respect to B.
Therefore, the rate of the reaction is given by,
Rate = k[A]1[B]0
⇒ Rate = fc[A]
From experiment I, we get
2.0 × 10-2 molL-1 min-1 = k(0.1 molL-1)
⇒ k = 0.2 min-1

From experiment II, we get
4.0 × 10-2 molL-1 min-1 = 0.2 min-1 [A]
⇒ [A] = 0.2 mol L-1

From experiment III, we get
Rate = 0.2 min-1; × 0.4 mol L-1
= 0.08 mol L-1 min-1

From experiment IV, we get
2.0 × 10-2 molL-1 min-1 = 0.2 min-1 [A]
⇒ [A] = 0.1 mol L-1

Question 13.
Calculate the half-life of a first order reaction from their rate constants given below:
(i) 200 s-1
(ii) 2 min-1
(iii) 4 years-1
Solution:
Half life period for first order reaction, t1/2 = \(\)
(i) t1/2 = \(\frac{0.693}{200 \mathrm{~s}^{-1}}\) = 0.347 × 10-2 s
= 3.47 × 10-3 s
(ii) t1/2 = \(\frac{0.693}{2 \min ^{-1}}\) = 0.35 mm
(iii) t1/2 = \(\frac{0.693}{4 \text { years }^{-1}}\)= 0.173 years 4 years-1

Question 14.
The half-life for radioactive decay of 14C is 5730 years. An archaeological artifact containing wood had only 80% of the 14C found in a living tree. Estimate the age of the sample.
Solution:
Decay constant (k) = \(\frac{0.693}{t_{1 / 2}}\)
\(\frac{0.693}{5730}\) = years -1
Radioactive decay follows first order kinetics
t = \(\frac{2.303}{k}\) = log\(\frac{[R]_{0}}{[R]}\)
= \(\frac{\frac{2.303}{0.693}}{5730}\) × log \(\frac{100}{80}\)
= 1845 years
Hence, the age of the sample is 1845 years.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 15.
The experimental data for decomposition of N205
[2N2O5 → 4NO2 + O2]
in gas phase at 318K are given below:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 13
(i) Plot [N2O5] against t.
(ii) Find the half-life period for the reaction.
(iii) Draw a graph between log [N2O5 ] and t.
(iv) What is the rate law?
(v) Calculate the rate constant
(vi) Calculate the half-life period from k and compare it with (ii).
Solution:
(i) The plot of [N2O5] against time is given below:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 6

(ii) Initial concentration of N2O5 = 1.63 x 10-2 M
Half of this concentration = 0.815 x 10-2 M
Time corresponding to this concentration = 1440 s
Hence t1/2 = 1440 s

(iii) For graph between log[N2O5] and time, we first find the values of log[N2O5]

Time (s) 102 × [N2O5] mol L-1 log [N2O5]
0 1.63 -1.79
400 1.36 -1.87
800 1.14 -1.94
1200 0.93 -2.03
1600 0.78 -2.11
2000 0.64 -2.19
2400 0.53 -2.28
2800 0.43 -2.37
3200 0.35 -2.46

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 14
(iv) The given reaction is of the first order as the plot, log [N205] v/s t, is a straight line. Therefore, the rate law of the reaction is
Rate = k [N2O5]

(v) From the plot, log [N2O5] v/s t, we get
Slope = \(\frac{-2.46-(-1.79)}{3200-0}\)
= \(\frac{-0.67}{3200}\)
Again, slope of the line of the plot log [N2O5] v/s t is given by
– \(\frac{k}{2.303}\)
Therefore we get
\(-\frac{k}{2.303}=-\frac{0.67}{3200}\)
k = \(\frac{0.67 \times 2.303}{3200}\)
= 4.82 × 10-4s-1

(vi) Half-life period (t1/2) = \(\)
= \(\frac{0.693}{4.82 \times 10^{-4} \mathrm{~s}^{-1}}\) = 1438 s
Half-life period (t1/2) is calculated from the formula and slopes are approximately the same.

Question 16.
The rate constant for a first order reaction is 60 s-1. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?
Solution:
For first order reaction
t = \(\frac{2.303}{k}\) log \(\frac{1}{(a-x)}\) …………. (i)
Given (a – x) = \(\frac{1}{16}\); k= 60 s-1
Placing the values in equation (i)
t = \(\frac{2.303}{60 \mathrm{~s}^{-1}}\) log \(\frac{a \times 16}{a}\)
= \(\frac{2.303}{60 \mathrm{~s}^{-1}}\) log16 \(\frac{2.303}{60 \mathrm{~s}^{-1}}\) × 4 log 2
= \(\frac{2.303}{60 \mathrm{~s}^{-1}}\) × 4 × 0.3010
= 4.6 × 10-2s
Hence, the required time is 4.6 × 10-2 s.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 17.
During nuclear explosion, one of the products is 90Sr with half-life of 28.1 years. If 1μ g of 90Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.
Solution:
As radioactive disintegration follows first order kinetics,
∴ Decay constant of 90Sr, k = \(\frac{0.693}{t_{1 / 2}}\)
= \(\frac{0.693}{28.1 \mathrm{y}}\) = 2.466 × 10-2y-1

To calculate the amount left after 10 years
[R]0 = 1μg, t = 10 years, k = 2.466 × 10-2y-1,[R] =?
k = \(\frac{2.303}{t}\) log \(\frac{[R]_{0}}{[R]}\)
2.466 × 10-2 = \(\frac{2.303}{10}\) log \(\frac{1}{[R]}\)
or log[R] = – 0.1071
or [Rl = Antilog \(\overline{1}\).8929 = 0.78 14 μg

To calculate the amount left after 60 years
2.466 × 10-2 = \(\frac{2.303}{60}\) log \(\frac{1}{[R]}\)
or log[R] = – 0.6425
or [R] = Antilog \(\overline{1}\).3575 = 0.2278 μg

Question 18.
For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
Solution:
For a first order reaction, the time required for 99% completion is
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 7
Therefore, t1 = 2t2
Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Question 19.
A first order reaction takes 40 min for 30% decomposition.
Calculate t1/2
Solution:
Given, t = 40 min,
For a first order reaction,
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 8

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 20.
For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

t (sec) P(mm of Hg)
0 35.0
360 54.0
720 63.0

Calculate the rate constant.
Solution:
The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 15
Hence, the average value of rate constant
k = \(\frac{\left(2.175 \times 10^{-3}\right)+\left(2.235 \times 10^{-3}\right)}{2} s^{-1}\)
= 2.21 × 10-3s-1

Question 21.
The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume.
SO2Cl2(g) → SO2(g) + Cl2(g)

Experiment Time/s-1 Total pressure/atm
1 0 0.5
2 100 0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.
Solution:
The first order thermal decomposition of SO2cl2 at a constant volume is represented by the following equation:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 16
= 2.23 × 10-3s-1

When Pt = 0.65 atm,
P0 + p = 0.65
⇒ p = 0.65 – P0
= 0.65 – 0.5
= 0.15 atm
Pressure of SO2Cl2 at time t (PSO2Cl2 SO2Cl2
= P0 – P
= 0.5 – 0.15
= 0.35 atm

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,
Rate = k × (PSO2Cl2 SO2Cl2)
= (2.23 × 10-3 s-1) (0.35 atm)
= 7.8 × 10-5 atm s-1

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 22.
The rate constant for the decomposition of N2O5 at various temperatures is given below:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 17
Draw a graph between In k and 1/T and calculate the values of A and Ea.
Predict the rate constant at 30° and 50°C.
Solution:
To draw the plot of log k versus 1/T, we can rewrite the given data as follows:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 18
From graph, we find
Slope = \(\frac{-2.4}{0.00047}\) = 5106.38
Ea = – Slope × 2.303 × R
= – (- 5106.38) × 2.303 × 8.314
= 97772.58 J mol-1
= 97.77258 kJ mol-1

We know that,
log k = log A – \(\frac{E_{a}}{2.303 R T}\)
log k = log \(\left[-\frac{E_{a}}{2.303 R}\right] \frac{1}{T}\) = log A
Compare it with y = mx + c (which is equation of line in intercept form)
log A = value of intercept on y-axis i.e.
on log k-axis [y2 – y1 = -1 – (-7.2)]
= (-1 + 7.2) = 6.2 ,
log A = 6.2
A = Antilog 6.2
= 1.585 × 106 s-1
The values of rate constant k can be found from graph as follows:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 19
We can also calculate the value of A from the following formula
log k = log A = \(\frac{E_{a}}{2.303 R T}\)

Question 23.
The rate constant for the decomposition of hydrocarbons is 2.418 × 10-5 s-1 at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.
Solution:
Given, k = 2.418 × 10-5s-1, T = 546 K
Ea = 179.9 kJ mol-1 = 179.9 × 103 J mol-1
According to the Arrhenius equation,
k = Ae-Ea/RT
ln k = ln A – \(\frac{E_{a}}{R T}\)
log k = log A – \(\frac{E_{a}}{2.303 R T}\)
log A = log K + \(\frac{E_{a}}{2.303 R T}\)
= log(2.418 × 1015s-1) + \(\frac{179.9 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{2.303 \times 8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1} \times 546 \mathrm{~K}}\)
= (0.3835 – 5) +17.2082 = 12.5917
Therefore, A = antilog (12.5917) = 3.9 × 1012s-1

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 24.
Consider a certain reaction A → Products with k = 2.0 × 10-2s-1 Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L-1.
Solution:
Given, k = 2.0 x 10-2s-1, t = 100 s, [A]0 = 1.0 mol L-1
Since, the unit of k is s-1, the given reaction is a first order reaction.
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 20

Question 25.
Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with t1/2 =3.00 hours. What fraction of sample of sucrose remains after 8 hours?
Solution:
For a first order reaction,
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 21
= 0.158 M
Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158 M.

Question 26.
The decomposition of hydrocarbon follows the equation k = (45 × 1011 s1)e-28000k/T
Calculate Ea.
Solution:
The given equation is
k = (45 × 1011 s1)e-28000k/T …(i)
Arrhenius equation is given by,
k = AeEa/RT …(ii)
From equation (i) and (ii), we get
\(\frac{E_{a}}{R T}\) = \(\frac{28000 \mathrm{~K}}{T}\)
⇒ Ea = R × 28000 K
= 8.314 J K-1 mol-1 × 28000 K
= 232792 J mol-1
= 232.792 kJ mol-1

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 27.
The rate constant for the first order decomposition of H2O2 is given by the following equation :
log k = 14.34 – 1.25 × 104 K/T
Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes?
Solution:
Arrhenius equation is given by,
k = Ae-Ea/RT
⇒ log k = log A – \(\frac{E_{a}}{2.303 \mathrm{RT}}\) …(i)
log k = 14.34 – 1.25 × 104 K/T …(ii)
From equation (i) and (ii), we get
\(\frac{E_{a}}{2.303 \mathrm{RT}}\) = \(\frac{1.25 \times 10^{4} \mathrm{~K}}{T}\)
⇒ Ea = 1.25 × 104K × 2.303 × R
= 1.25 × 104K × 2.303 × 8.314 J K-1 mol-1
= 239339.3 J mol-1
= 239.34 kJ mol-1
Also, when t1/2 = 256 minutes,
For first order reaction
k = \(\frac{0.693}{t_{1 / 2}}\)
= \(\frac{0.693}{256}\)
= 2.707 × 10-13 min-1
= 4.51 × 10-5 s-1
According to Arrhenius theory,
log k = 14.34 – 1.25 × 10,4K/T
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 22

Question 28.
The decomposition of A into product has value of & as 45 × 103 s-1 at 10°C and energy of activation 60 kJ mol-1. At what temperature would k be 1.5 × 104 s-1.
Solution:
From Arrhenius equation, we get
\(\log \frac{k_{2}}{k_{1}}\) = \(\frac{E_{a}}{2.303 \mathrm{R}}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)\)
Also, k1 = 4.5 × 103 s-1
T1 = 273 + 10 = 283k
k2 = 1.5 × 104 s-1
Ea = 60 kJmol-1 = 6.0 × 104 Jmol-1
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 23
⇒ 0.0472T2 = T2 – 283
⇒ 0.9528T2 = 283
⇒ T2 = 297.019 K
= 297K = (297 – 273)0C
= 240C
Hence, k would be 1.5 × 104 s-1 at 240C.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 29.
The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K. If the value of A is 4 × 1010 s-1. Calculate k at 318 K and Ea.
Solution:
For a first order reaction,
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 24
To calculate k at 318 K,
It is given that, A = 4 × 1010 s-1, T = 318 K
Again, from Arrhenius equation, we get
log k = log A – \(\frac{E_{a}}{2.303 \mathrm{RT}}\)
= log (4 × 1010) – \(\frac{76.64 \times 10^{3}}{2.303 \times 8.314 \times 318}\)
= (0.6021 + 10) – 12.5870 = -1.9849 k
k = Antilog (-1.9849)
= Antilog (2.0151) = 1.035 × 10-2s-1
Ea = 76.640 kJ mol-1
Ea = 76.640 kJmol-1
k = 1.035 × 10-2s-1

Question 30.
The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.
Solution:
Given, k2 = 4k1, T1 = 293 K, T2 = 313 K
From Arrhenius equation, we get
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 25
Hence, the required energy of activation is 52.86 kJ mol-1

Chemistry Guide for Class 12 PSEB Chemical Kinetics Textbook Questions and Answers

Question 1.
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Solution:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 26

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 2.
In a reaction, 2A → Products, the concentration of A decreases from 0.5 mol L-1 to 0.4 mol L-1 in 10 minutes. Calculate the rate during this interval?
Solution:
Rate of reaction = Rate of disappearance of A = – \(\frac{1}{2} \frac{\Delta[A]}{\Delta t}\)
= – \(\frac{1}{2} \frac{[A]_{2}-[A]_{1}}{t_{2}-t_{1}}\)
= – \(\frac{1}{2} \frac{(0.4-0.5) \mathrm{mol} \mathrm{L}^{-1}}{10 \mathrm{~min}}\)
= – \(\frac{1}{2} \frac{-0.1}{10}\)
= 0.005 mol L-1 min-1
= 5 × 10-3 M min-1

Question 3.
For a reaction, A + B → Product; the rate law is given by,
r = k [A]1/2 [B]2. What is the order of the reaction?
Solution:
The order of the reaction = \(\frac{1}{2}\) + 2
= 2\(\frac{1}{2}\) = 2.5

Question 4.
The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y? ‘
Solution:
The reaction X → Y follows second order kinetics.
Therefore, the rate equation for this reaction will be:
Rate (r) = k[X]2 = k × X2 …………. (i)
If the concentration of X is increased to three times, then
Rate (r’) = fc(3X)2 = k × 9X2 ………….. (ii)
Dividing eq. (ii) by eq. (i)
\(\frac{r^{\prime}}{r}=\frac{k \times 9 X^{2}}{k \times X^{2}}\) = 9
It means that the rate of formation of Y will increase by nine times.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 5.
A first order reaction has a rate constant 1.15 × 10-3s-1. How long will 5 g of this reactant take to reduce to 3 g?
Solution:
Initial amount [R]0 = 5 g
Final amount [R] = 3 g
Rate constant (k) = 1.15 × 10-3s-1
We know that for a 1st order reaction,
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 27
= 444.38 s
= 444 s

Question 6.
Time required to decompose SO2Cl2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
Solution:
We know that for a 1st order reaction,
t1/2 = \(\frac{0.693}{k}\)
> k = \(\frac{0.693}{t_{1 / 2}}\)
= \(\frac{0.693}{60 \mathrm{~min}}\) = \(\frac{0.693}{(60 \times 60) \mathrm{s}}\)
or k = 1.925 × 10-4 s-1]

Question 7.
What will be the effect of temperature on rate constant?
Answer:
The rate constant of a reaction is nearly doubled with a 10° rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by Arrhenius equation,
k = Ae-Ea/RT
Where, A is the Arrhenius factor or the frequency factor, T is the temperature, R is the gas constant, Ea is the activation energy.

PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics

Question 8.
The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate Ea.
Solution:
Given, T1 = 298 K
∴ T2 = (298 + 10)K = 308K
We also know that the rate of the reaction doubles when temperature is increased by 10°.
Therefore, let us take the value of k1 = k and that of k2 = 2k
Also, R =8.314 JK-1 mol-1
Now, substituting these values in the equation:
PSEB 12th Class Chemistry Solutions Chapter 4 Chemical Kinetics 28

Question 9.
The activation energy for the reaction
2HI (g) → H2 + I2(g)
is 209.5 kJ mol-1 at 58IK. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?
Solution:
Fraction of molecules of reactants (x) having energy equal to or greater than activation energy may be calculated as follows
or log x = \(\frac{-E_{a}}{R T}\) or log x = –\(\frac{E_{a}}{2.303 R T}\)
or log x = – \(\frac{209.5 \times 10^{3}}{2.303 \times 8.314 \times 581}\)
= -18.8323
x = Antilog (-18.8323) = Antilog (\(\overline{19}\).1677)
= 1.471 × 10-19
Hence, fraction of molecules of reactants having energy equal to or greater than activation energy = 1.471 × 10-19

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 7 Alternating Current Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 7 Alternating Current

PSEB 12th Class Physics Guide Alternating Current Textbook Questions and Answers

Question 1.
A 100 Ω resistor is connected to a 220 V, 50 Hz ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?
Answer:
The given voltage of 220 V is the rms or effective voltage.
Given Vrms = 220 V, v = 50 Hz, R = 100 Ω
(a) RMS value of current,
Irms = \(\frac{V_{r m s}}{R}\) = \(\frac{220}{100}\) = 2.2 A
Net power consumed, P = I2rmsR
= (2.20)2 × 100 = 484 W

Question 2.
(a) The peak voltage of an ac supply is 300 V. What is the rms voltage?
(b) The rms value of current in an ac circuit is 10 A. What is the peak current?
Answer:
(a) Given, V0 = 300 V
Vrms = \(\frac{V_{0}}{\sqrt{2}}=\frac{300}{\sqrt{2}}\) = 150√2 ≈ 212 V

(b) Given, Irms = 10 A
I0 = Irms √2 = 10 × 1.41 = 14.1 A

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 3.
A 44 mH inductor is connected to 220 V, 50 Hz ac supply. Determine the rms value of the current in the circuit.
Answer:
Inductance of inductor, L = 44 mH = 44 × 10-3 H
Supply voltage, V = 220 V
Frequency, v = 50 Hz
Angular frequency, ω = 2 πv
Inductive reactance, XL = ωL = 2πvL × 2π × 50 × 44 × 10-3Ω
rms value of current is given as
I = \(\frac{V}{X_{L}}\) = \(\frac{220}{2 \pi \times 50 \times 44 \times 10^{-3}}\) = 15.92 A
Hence, the rms value of current in the circuit is 15.92 A.

Question 4.
A 60 μF capacitor is connected to a 110 V, 60 Hz ac supply. Determine the rms value of the current in the circuit.
Answer:
Capacitance of capacitor, C = 60μF = 60 × 10-6F
Supply voltage, V = 110 V
Frequency, v = 60 Hz
Angular frequency, ω = 2 πv
Capacitive reactance,
XC = \(\frac{1}{\omega C}\) = \(\frac{1}{2 \pi v C}\) = \(\frac{1}{2 \pi \times 60 \times 60 \times 10^{-6}}\)Ω
rms value of current is given as
I = \(\frac{V}{X_{C}}\) = \(\frac{110}{\frac{1}{2 \pi \times 60 \times 60 \times 10^{-6}}}\)
= 110 × 2 × 3.14 × 3600 × 10-6
= 2.49 A
Hence, the rms value of current in the circuit is 2.49 A.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 5.
In Exercises 7.3 and 7.4, what is the net power absorbed by each circuit over a complete cycle. Explain your answer.
Answer:
In the inductive circuit,
rms value of current, I = 15.92 A
rms value of voltage, V = 220 V
Hence, the net power absorbed by the circuit, can be obtained by the relation,
P = VIcosΦ
where,
Φ = Phase difference between V and I.
For a pure inductive circuit, the phase difference between alternating voltage and current is 90°i. e., Φ = 90°
Hence, P = 0 i. e., the net power is zero.

In the capacitive circuit,
rms value of current, I = 2.49 A
rms value of voltage, V = 110 V
Hence, the net power absorbed by the circuit, can be obtained as
P = VIcosΦ
For a pure capacitive circuit, the phase difference between alternating voltage and current is 90°i. e., Φ = 90 °
Hence, P = 0 i. e., the net power is zero.

Question 6.
Obtain the resonant frequency ωr of a series LCR circuit with L = 2.0 H, C = 32 μF and R = 10 Ω. What is the Q-value of this circuit?
Answer:
Resonant frequency,
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{2.0 \times 32 \times 10^{-6}}}\)
= \(\frac{1}{8}\) × 103 = 125 rads-1
Q = \(\frac{\omega_{r} L}{R}\) = \(\frac{125 \times 2.0}{10}\) = 25

Question 7.
A charged 30 μF capacitor is connected to a 27 mH inductor.
What is the angular frequency of free oscillations of the circuit?
Answer:
Capacitance of the capacitor, C = 30 μF = 30 × 10-6 F,
Inductance of the inductor, L = 27 mH = 27 × 10-3H
Angular frequency is given as
ωr = \(\frac{1}{\sqrt{L C}}\)
= \(\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}\)
= \(\frac{1}{9 \times 10^{-4}}=\frac{10^{4}}{9}\)
= 1.11 × 103 rad/s
Hence, the angular frequency of free oscillations of the circuit is 1.11 × 103 rad/s.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 8.
Suppose the initial charge on the capacitor in Exercise 7.7 is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?
Answer:
Capacitance of the capacitor, C = 30 μF = 30 × 10-6F
Inductance of the inductor, L = 27 mH = 27 × 10-3 H
Charge on the capacitor, Q = 6 mC = 6 × 10-3 C
Total energy stored in the capacitor can be calculated as
E = \(\frac{1}{2} \frac{Q^{2}}{C}\) = \(\frac{1}{2} \frac{\left(6 \times 10^{-3}\right)^{2}}{\left(30 \times 10^{-6}\right)}\)
= \(\frac{36 \times 10^{-6}}{2\left(30 \times 10^{-6}\right)}\)
= \(\frac{6}{10}\) = 0.6 J
Total energy at a later time will remain the same because energy is shared between the capacitor and the inductor.

Question 9.
A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 μF is connected to a variable frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?
Answer:
When frequency of supply is equal to natural frequency of circuit, then resonance is obtained. At resonance XC = XL
⇒ Impedance, Z = \(\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}\)
= R = 20Ω
Current in circuit,
Irms = \(\frac{V_{r m s}}{R}\) = \(\frac{200}{20}\) = 10A
Power factor
cosΦ = \(\frac{R}{Z}=\frac{R}{R}\) = 1
∴ Average power pav = Vrms Irms cosΦ = Vrms Irms
= 20 × 10 = 2000 W = 2 kW

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 10.
A radio can tune over the frequency range of a portion of MW broadcast band : (800 kHz to 1200 kHz). If its LC circuit has an effective inductance of 200 μH, what must be the range of its variable capacitor?
[Hint: For timing, the natural frequency i. e., the frequency of free oscillations of the LC circuit should be equal to the frequency of the radiowave.]
Answer:
The range of frequency (v) of the radio is 800 kHz to 1200 kHz
Lower tuning frequency, v1 = 800 kHz = 800 × 103 Hz
Upper tuning frequency, v2 = 1200 kHz = 1200 × 106 Hz
Effective inductance of circuit, L = 200 μH = 200 × 10-6 H
Capacitance of variable capacitor for v1 is given as
C1 = \(\frac{1}{\omega_{1}^{2} L}\)
where, ω1 = Angular frequency for capacitor C1
= 2 πv1
= 2 π × 800 × 103 rad/s
∴ C1 = \(\frac{1}{\left(2 \pi \times 800 \times 10^{3}\right)^{2} \times 200 \times 10^{-6}}\)
= 197.8 × 10-12F
= 197.8 pF
Capacitance of variable capacitor for v2 is given as
C2 = \(\frac{1}{\omega_{2}^{2} L}\)
where,
ω2 = Angular frequency for capacitor C2
= 2πv2
= 2 π × 1200 × 103 rad/s
∴ C 2 = \(\frac{1}{\left(2 \pi \times 1200 \times 10^{3}\right)^{2} \times 200 \times 10^{-6}}\)
= 87.95 × 10-12 F = 87.95 pF
Hence, the range of the variable capacitor is from 87.95 pF to 197.8 pF.

Question 11.
Figure 7.21 shows a series LCR circuit connected to a variable frequency 230 V source. Z, = 5.0H, C = 80 μF, R = 40Ω.
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 1
(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.
Answer:
Given, the rms value of voltage Vrms = 230 V
Inductance L = 5H
Capacitance C = 80 μF = 80 × 10-6 F
Resistance R = 40 Ω

(a) For resonance frequency of circuit
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{5 \times 80 \times 10^{-6}}}\) = 50 rad/s
Source frequency at resonance, then
v0 = \(\frac{\omega_{0}}{2 \pi}\) = \(\frac{50}{2 \times 3.14}\) = 7.76 Hz

(b) At the resonant frequency, XL = XC
So, impedance of the circuit Z = R
∴ Impedance Z = 40 Ω
The rms value of current in the circuit
Irms = \(\frac{V_{r m s}}{Z}\) = \(\frac{230}{40}\) = 5.75 A
Amplitude of current, I0 = Irms √2
= 5.75 × √2 = 8.13 A

(c) The rms potential drop across I,
VL = Irms × XL = Irms × ωrL
= 5.75 × 50 × 5 = 1437.5V
The rms potential drop across R
VR = Irms R = 5.75 × 40 = 230 V
The rms potential drop across C,
VC = Irms × XC = Irms × \(\frac{1}{\omega_{r} C}\)
= 5.75 × \(\frac{1}{50 \times 80 \times 10^{-6}}\)
= 1437.5V
Potential drop across LC combinations
= Irms(XL – XC)
= Irms (XL – XL) = 0
(∵ XL = XC in resonance)

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 12.
An LC circuit contains a 20 mH inductor and a 50 μF capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. Let the instant the circuit is closed be t = 0.
(a) What is the total energy stored initially? Is it conserved during LC oscillations?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored (i) completely electrical (Lestored in the capacitor)? (ii) completely magnetic (i.e., stored in the inductor)?
(d) At what times is the total energy shared equally between the inductor and the capacitor?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?
Answer:
Inductance of the inductor, L = 20 mH = 20 × 10-3H
Capacitance of the capacitor, C = 50 μF = 50 × 10-6 F
Initial charge on the capacitor, Q = 10 mC = 10 × 10-3C

(a) Total energy stored initially in the circuit is given as
E = \(\frac{1}{2} \frac{Q^{2}}{C}\)
= \(\frac{\left(10 \times 10^{-3}\right)^{2}}{2 \times 50 \times 10^{-6}}=\frac{10^{-4}}{10^{-4}}\) = 1J
Hence, the total energy stored in the LC circuit will be conserved because there is no resistor connected in the circuit.

(b) Natural frequency of the circuit is given by the relation,
v = \(\frac{1}{2 \pi \sqrt{L C}}\)
= \(\frac{1}{2 \pi \sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}\)
= \(\frac{10^{3}}{2 \pi}\) = 159.24 Hz
Natural angular frequency,
ωc = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}\)
= \(\frac{1}{\sqrt{10^{-6}}}\) = 103 rad/s
Hence, the natural frequency of the circuit is 10 rad/s.

(c) (i) For time period (T = \(\frac{1}{v}\) = \(\frac{1}{159.24}\) = 6.28 ms), total charge on the
capacitor at time t,
Q’ = Q cos\(\frac{2 \pi}{T}\)t
For energy stored is electrical, we can write Q’ = Q
Hence, it can be inferred that the energy stored in the capacitor is completely electrical at time, t = 0, \(\frac{T}{2}\), T, \(\frac{3 T}{2}\),…

(ii) Magnetic energy is the maximum when electrical energy, Q’ is equal to 0.
Hence, it can be inferred that the energy stored in the capacitor is
completely magnetic at time, t = \(\frac{T}{4}\), \(\frac{3 T}{4}\), \(\frac{5 T}{4}\),….

(d) Q’ = Charge on the capacitor when total energy is equally shared between the capacitor and the inductor at time t.
When total energy is equally shared between the inductor and capacitor,
the energy stored in the capacitor = \(\frac{1}{2}\) (maximum energy)
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 2
Hence, total energy is equally shared between the inductor and the capacitor at time,
t = \(\frac{T}{8}\), \(\frac{3 T}{8}\),\(\frac{5 T}{8}\)

(e) If a resistor is inserted in the circuit, then total initial energy is dissipated as heat energy in the circuit. The resistance damps out the LC oscillation.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 13.
A coil of inductance 0.50 H and resistance 100 Ω is connected to a 240 V, 50 Hz ac supply.
(a) What is the maximum current in the coil?
(b) What is the time lag between the voltage maximum and the current maximum?
Answer:
Given, L = 0.50 H ,R = 100 Ω, V = 240 V, v = 50 Hz
(a) Maximum (or peak) voltage V0 = V – √2
Maximum current, I0 = \(\frac{V_{0}}{Z}\)
Inductive reactance, XL = ωL = 2πvL
= 2 × 3.14 × 50 × 0.50
= 157 Ω.
Z = \(\sqrt{R^{2}+X_{L}^{2}}\)
= \(\sqrt{(100)^{2}+(157)^{2}}\) = 186 Ω
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 3

Question 14.
Obtain the answers (a) to (b) in Exercise 7.13 if the circuit is connected to a high frequency supply (240 V, 10 kHz). Hence, explain the statement that at very high frequency, an inductor in a circuit nearly amounts to an open circuit. How does an inductor behave in a dc circuit after the steady state?
Answer:
Inductance of the inductor, L = 0.5 Hz
Resistance of the resistor, R = 100 Ω
Potential of the supply voltage, V = 240 V
Frequency of the supply, v = 10 kHz = 104 Hz
Angular frequency, ω = 2πv = 2 π × 104 rad/s

(a) Peak voltage, V0 = √2 × V = 240√2 V
Maximum current, I0 = \(\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}}\)
= \(\frac{240 \sqrt{2}}{\sqrt{(100)^{2}+\left(2 \pi \times 10^{4}\right)^{2} \times(0.50)^{2}}}\)
= 1.1 × 10-2 A

(b) For phase difference, Φ, we have the relation
tanΦ = \(\frac{\omega L}{R}\) = \(\frac{2 \pi \times 10^{4} \times 0.5}{100}\) = 100π
Φ = 89.82° = \(\frac{89.82 \pi}{180}\) rad
ωt = \(\frac{89.82 \pi}{180}\)
t = \(\frac{89.82 \pi}{180 \times 2 \pi \times 10^{4}}\) = 25 μs

It can be observed that I0 is very small in this case. Hence, at high frequencies, the inductor amounts to an open circuit.
In a dc circuit, after a steady state is achieved, ω = 0. Hence, inductor L behaves like a pure conducting object.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 15.
A 100 μF capacitor in series with a 40 Ω resistance is connected to a 110 V, 60 Hz supply.
(a) What is the maximum current in the circuit?
(b) What is the time lag between the current maximum and the voltage maximum?
Answer:
Capacitance of the capacitor, C = 100 μF = 100 × 10-6 F = 10-4 F
Resistance of the resistor, R = 40 Ω
Supply voltage, V = 110 V
Frequency of oscillations, v = 60 Hz
Angular frequency, co = 2πv = 2π × 60 rad/s = 120 π rad/s
For a RC circuit, we have the relation for impedance as
Z = \(\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}\)
peak voltage V0 = V√2 = 110√2
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 4

(b) In an RC circuit, the voltage lags behind the current by a phase angle of Φ. This angle is given by the relation
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 5
= 1.55 × 10-3 s
= 1.55 ms
Hence, the time lag between maximum current and maximum voltage is 1.55 ms.

Question 16.
Obtain the answers to (a) and (b) in Exercise 7.15 if the circuit is connected to a 110 V, 12 kHz supply? Hence, explain the statement that a capacitor is a conductor at very high frequencies. Compare this behaviour with that of a capacitor in a dc circuit after the steady state.
Answer:
Capacitance of the capacitor, C = 100 μF = 100 × 10-6 F
Resistance of the resistor, R = 40 Ω
Supply voltage, V = 110 V
Frequency of the supply, v = 12 kHz = 12 × 103 Hz
Angular frequency, ω = 2πv = 2 × π × 12 × 103
= 24 π × 103 rad/s
Peak voltage, V0 = V√2 = 110 √2V
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 6
= 0.04 μs
Hence, Φ tends to become zero at high frequencies. At a high frequency, capacitor C acts as a conductor.
In a dc circuit, after the steady state is achieved, ω = 0. Hence, capacitor C acts an open circuit.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 17.
Keeping the source frequency equal to the resonating frequency of the series LCR circuit, if the three elements, L, C and R are arranged in parallel, show that the total current in the parallel LCR circuit is minimum at this frequency. Obtain the current rms value in each branch of the circuit for the elements and source specified in Exercise 7.11 for this frequency.
Answer:
Here, L = 5.0 H
C = 80 μF = 80 × 10-6 F
R = 40Ω
The effective impedance of the parallel LCR is given by
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 7

Question 18.
A circuit containing a 80 mH inductor and a 60 µF capacitor in series is connected to a 230 V, 50 Hz supply. The resistance of the circuit is negligible.
(a) Obtain the current amplitude and rms values.
(b) Obtain the rms values of potential drops across each element.
(c) What is the average power transferred to the inductor?
(d) What is the average power transferred to the capacitor?
(e) What is the total average power absorbed by the circuit?
[‘Average’ implies ‘averaged over one cycle’.]
Answer:
Given,
V = 230 V, v = 50 Hz, L = 80 mH = 80 × 10-3 H,
C = 60µF = 60 × 10-6 F

(a) Inductive reactance XL = ωL = 2πvL
= 2 × 3.14 × 50 × 80 × 10-3
= 25.1 Ω
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 8
(b) RMS value of potential drops across L and C are
VL = XL Irms = 25.1 × 8.23 = 207 V
VC = XC Irms = 53.1 × 8.23 = 437 V
Net voltage = VC – VL = 230 V

(c) The voltage across L leads the current by angle \(\frac{\pi}{2}\) , therefore, average
power
Pav Vrms Irms cos \(\frac{\pi}{2}\) = 0 (zero)

(d) The voltage across C lags behind the current by angle \(\frac{\pi}{2}\),
∴ pav = Vrms Irms cos \(\frac{\pi}{2}\) = 0

(e) As circuit contains pure I and pure C, average power consumed by LC circuit is zero.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 19.
Suppose the circuit in Exercise 7.18 has a resistance of 15 Ω. Obtain the average power transferred to each element of the circuit, and the total power absorbed.
Answer:
Here, R – 15Ω, L = 80 mH = 80 × 10-3 H
C = 60 μF = 60 × 10-6 F.
Er.m.s. = 230 V
v = 50 Hz
> ω = 2πv = 2π × 50 =100 π
Z = impedance of LCR circuit
= \(\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}\)
PSEB 12th Class Physics Solutions Chapter 7 Alternating Current 9
= 7.258 = 7.26 A
∴ Average power consumed by R or transferred to R is given by
(Pav)R = I2r.m.s..R = (7.26)2 × 15 = 790.614 W
= 791 W.
Also (Pav)L and (Pav)C be the average power transferred to I and C respectively.
(Pav)L = Er.m.s. . Ir.m.s. cosΦ
Here e.m.f. leads current by \(\frac{\pi}{2}\)
∴ (Pav)L= Er.m.s. . Ir.m.s. cos \(\frac{\pi}{2}\)
= 0
and (Pav )C = = Er.m.s. . Ir.m.s. cosΦ
= 0
( ∵ Φ = \(\frac{\pi}{2}\) and cos \(\frac{\pi}{2}\) = 0

If Pav be the total power absorbed in the circuit, then
Pav = (Pav)L + (Pav )C + (Pav )R
= 0 + 0 + 791
= 791 W

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 20.
A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to a 230 V variable frequency supply.
(a) What is the source frequency for which current amplitude is maximum? Obtain this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum? Obtain the value of this maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?
(d) What is the Q-factor of the given circuit?
Answer:
Inductance, L = 0.12 H
Capacitance, C = 480 nF = 480 × 10-9 F
Resistance, R = 23 Ω
Supply voltage, V = 230 V
Peak voltage is given as V0 = √2V
V0 = √2 × 230 = 325.22 V

(a) Current flowing in the circuit is given by the relation,
I0 = \(\frac{V_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}\)
where, I0 = maximum at resonance
At resonance, we have
ωRL – \(\frac{1}{\omega_{R} C}[latex] = 0
where, ωR = Resonance angular frequency
∴ ωR = [latex]\frac{1}{\sqrt{L C}}\)
= \(\frac{1}{\sqrt{0.12 \times 480 \times 10^{-9}}}\)
= \(\frac{10^{5}}{\sqrt{12 \times 48}}=\frac{10^{5}}{24}\)
= 4166.67 rad/s
∴ Resonant frequency; vR = \(\frac{\omega_{R}}{2 \pi}\) = \(\frac{4166.67}{2 \times 3.14}\) = 663.48 HZ
and, maximum current (I0)max = \(\frac{V_{0}}{R}\) = \(\frac{325.22}{23}\) 14.14 A

(b) Average power absorbed by the circuit is given as
Pav = \(\frac{1}{2}\)I02R

The average power is maximum at ω = ω0 at which I0 = (I0)max
∴ (pav )max = \(\frac{1}{2}\)(I0)2maxR
= \(\frac{1}{2}\) × (14.14)2 × 23 = 2299.3 W
= 2300 W

(c) The power transferred to the circuit is half the power at resonant frequency.
Frequencies at which power transferred is half, ω = ωR ± Δ ω
= 2π (vR ± Δv)
where, Δω = \(\frac{R}{2 L}\)
= \(\frac{23}{2 \times 0.12}\) = 95.83 rad/s
Hence, change in frequency, Δ v = \(\frac{1}{2 \pi}\) Δω = \(\frac{95.83}{2 \pi}\) = 15.26 Hz
Thus power absorbed is half the peak power at
vR + Δv = 663.48 + 15.26 = 678.74 Hz
and, vR ΔV = 663.48 – 15.26 = 648.22 Hz
Hence, at 648.22 Hz and 678.74 Hz frequencies, the power transferred is half.
At these frequencies, current amplitude can be given as
I’ = \(\frac{1}{\sqrt{2}}\) × (I0)max = \(\frac{14.14}{\sqrt{2}}=\frac{14.14}{1.414}\) = 10 A

(d) Q-factor of the given circuit can be obtained using the relation,
Q = \(\frac{\omega_{R} L}{R}\) = \(\frac{4166.67 \times 0.12}{23}\) = 21.74
Hence, the Q-factor of the given circuit is 21.74.

Question 21.
Obtain the resonant frequency and Q-factor of a series LCR circuit with L = 3.0 H, C = 27 μF and R = 7.4 Ω. It is desired to improve the sharpness of the resonance of the circuit by reducing its ‘full width at half maximum’ by a factor of 2. Suggest a suitable way.
Answer:
Inductance, L = 3.0 H
Capacitance, C = 27 μF = 27 × 10-6F
Resistance, R = 7.4 Ω
At resonance, resonant frequency of the source for the given LCR series circuit is given as
ωr = \(\frac{1}{\sqrt{L C}}\) = \(\frac{1}{\sqrt{3 \times 27 \times 10^{-6}}}\)
\(\frac{10^{3}}{9}\) = 111.11 rad s-1
Q-factor of the series
Q = \(\frac{\omega_{r} L}{R}\) = \(\frac{111.11 \times 3}{7.4}\) = 45.0446
To improve the sharpness of the resonance by reducing its ‘full width at half maximum’ by a factor of 2 without changing cor, we need to reduce R to half i. e., Resistance = \(\frac{R}{2}=\frac{7.4}{2}\) = 3.7 Ω.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 22.
Answer the following questions :
(a) In any ac circuit, is the applied instantaneous voltage equal to the algebraic sum of the instantaneous voltages across the series elements of the circuit? Is the same true for rms voltage?

(b) A capacitor is used in the primary circuit of an induction coil.

(c) An applied voltage signal consists of a superposition of a dc voltage and an ac voltage of high frequency. The circuit consists of an inductor and a capacitor in series. Show that the dc signal will appear across C and the ac signal across L.

(d) A choke coil in series with a lamp is connected to a dc line. The lamp is seen to shine brightly. Insertion of an iron core in the choke causes no change in the lamp’s brightness. Predict the corresponding observations if the connection is to an ac line.

(e) Why is choke coil needed in the use of fluorescent tubes with ac mains? Why can we not use an ordinary resistor instead of the choke coil?
Answer:
(a) Yes; the statement is not true for rms voltage.
It is true that in any ac circuit, the applied voltage is equal to the average sum of the instantaneous voltages across the series elements of the circuit. However, this is not true for rms voltage because voltages across different elements may not be in phase.

(b) High induced voltage is used to charge the capacitor.
A capacitor is used in the primary circuit of an induction coil. This is because when the circuit is broken, a high induced voltage is used to charge the capacitor to avoid sparks.

(c) The dc signal will appear across capacitor C because for dc signals, the impedance of an inductor (L) is negligible while the impedance of a capacitor (C) is very high (almost infinite). Hence, a dc signal appears across C. For an ac signal of high frequency, the impedance of L is high and that of C is very low. Hence, an ac signal of high frequency appears across L.

(d) If an iron core is inserted in the choke coil (which is in series with a lamp connected to the ac line), then the lamp will glow dimly. This is because the choke coil and the iron core increase the impedance of the circuit.

(e) A choke coil is needed in the use of fluorescent tubes with ac mains because it reduces the voltage across the tube without wasting much power. An ordinary resistor cannot be used instead of a choke coil for this purpose because it wastes power in the form of heat.

Question 23.
A power transmission line feeds input power at 2300 V to a stepdown transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary in order to get output power at 230 V?
Answer:
Input voltage, V1 = 2300 V
Number of turns in primary coil, n1 = 4000
Output voltage, V2 = 230 V
Number of turns in secondary coil = n2
Voltage is related to the number of turns as
\(\frac{V_{1}}{V_{2}}=\frac{n_{1}}{n_{2}}\)
\(\frac{2300}{230}=\frac{4000}{n_{2}}\)
n2 = \(\frac{4000 \times 230}{2300}\) = 400
Hence, there are 400 turns in the second winding.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 24.
At a hydroelectric power plant, the water pressure head is at a height of 300 m and the water flow available is 100 m3s-1 . If the turbine generator efficiency is 60%, estimate the electric power available from the plant (g = 9.8 ms-2).
Answer:
Height of the water pressure head, h = 300 m
Volume of water flow per second, V = 100 m3/s
Efficiency of turbine generator, η = 60% = 0.6
Acceleration due to gravity, g = 9.8 m/ s2
Density of water, ρ = 103 kg/m3
Electric power available from the plant = η × h ρ gV
= 0.6 × 300 × 103 × 9.8 × 100
= 176.4 × 106 W
= 176.4 MW

Question 25.
A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away from an electric plant generating power at 440 V. The resistance of the two wire line carrying power is 0.5 Ω per km. The town gets power from the line through a 4000-220 V step-down transformer at a sub-station in the town.
(a) Estimate the line power loss in the form of heat.
(b) How much power must the plant supply, assuming there is negligible power loss due to leakage?
(c) Characterise the step up transformer at the plant.
Answer:
Total electric power required, P = 800 kW = 800 × 103 W
Supply voltage, V = 220 V
Voltage at which electric plant is generating power, V’ = 440 V
Distance between the town and power generating station, d = 15 km
Resistance of the two wire lines carrying power = 0.5 Ω/km
Total resistance of the wires, R = (15 + 15)0.5 = 15Ω
A step-down transformer of rating 4000 – 220 V is used in the sub-station.
Input voltage, V1 = 4000 V
Output voltage, V2 = 220 V
rms current in the wire lines is given as
I = \(\frac{P}{V_{1}}\) = \(\frac{800 \times 10^{3}}{4000}\) = 200 A

(a) Line power loss = I2R = (200)2 × 15 = 600 × 103 W = 600 kW

(b) Assuming that the power loss is negligible due to the leakage of the current.
Total power supplied by the plant = 800 kW + 600 kW = 1400 kW

(c) Voltage drop in the power line = IR = 200 × 15 = 3000 V
Hence, total voltage transmitted from the plant = 3000 + 4000 = 7000 V Also, the power generated is 440 V.
Hence, the rating of the step-up transformer situated at the power plant is 440 V – 7000 V.

PSEB 12th Class Physics Solutions Chapter 7 Alternating Current

Question 26.
Do the same exercise as above with the replacement of the earlier transformer by a 40,000-220 V step-down transformer (Neglect, as before, leakage losses though this may not be a good assumption any longer because of the very high voltage transmission involved). Hence, explain why high voltage transmission is preffered?
Answer:
The rating of the step-down transformer is 40000 V – 220 V
Input voltage, V1 = 40000 V
Output voltage, V2 = 220 V
Total electric power required, P = 800 kW = 800 × 103 W
Source potential, V = 220 V
Voltage at which the electric plant generates power, V’ = 440 V
Distance between the town and power generating station, d = 15 km
Resistance of the two wire lines carrying power = 0.5 Ω/km
Total resistance of the wire lines, R = (15 + 15)0.5 = 15 Ω
rms current in the wire line is given as
I = \(\frac{P}{V_{1}}\) = \(\frac{800 \times 10^{3}}{40000}\) = 20A

(a) Line power loss = I2R
= (20)2 × 15 = 6000 W = 6 kW

(b) Assuming that the power loss is negligible due to the leakage of current.
Hence, total power supplied by the plant = 800 kW + 6 kW = 806 kW

(c) Voltage drop in the power line = 7R = 20 × 15 = 300 V
Hence, voltage that is transmitted by the power plant
= 300 + 40000 = 40300 V
The power is being generated in the plant at 440 V.
Hence, the rating of the step-up transformer needed at the plant is 440 V – 40300 V. ‘
Hence, power loss during transmission = \(\frac{600}{1400}\) x 100 = 42.8%
In the previous exercise, the power loss due to the same reason is
\(\frac{6}{800}\) × 100 = 0.744%
Since the power loss is less for a high voltage transmission, high voltage transmissions are preferred for this purpose.

PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 9 Ray Optics and Optical Instruments Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 9 Ray Optics and Optical Instruments

PSEB 12th Class Physics Guide Ray Optics and Optical Instruments Textbook Questions and Answers

Question 1.
A small candle, 2.5 cm in size is placed at 27 cm in front of a concave mirror of radius of curvature 36 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. If the candle is moved closer to the mirror, how would the screen have to be moved?
Answer:
Size of the candle, h = 2.5 cm
Image size = h’
Object distance, u = -27 cm
Radius of curvature of the concave mirror, R = -36 cm
Focal length of the concave mirror, f = \(\frac{R}{2}=\frac{-36}{2}\) = -18 cm
Image distance = v

The image distance can be obtained using the mirror formula
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 1

The negative sign shows that the image is formed in front of the mirror i.e., on the side of the object itself. Thus the screen must be placed at a distance of 54 cm in front of the mirror.
The magnification of the image is given as

The height of the candle’s image is 5 cm. The negative sign indicates that the image is inverted and virtual.
If the candle is moved closer to the mirror, then the screen will have to be moved away from the mirror in order to obtain the image.

Question 2.
A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm. Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.
Answer:
Given u = -12 cm, f = +15 cm. (convex mirror)
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 3

That is image is formed at a distance of 6.67 cm behind the mirror.
Magnification m = \(-\frac{v}{u}=-\frac{\frac{20}{3}}{-12} \) = \(\frac{5}{9}\)
Size of image I = mO = \(\frac{5}{9}\) x 4.5 = 2.5 cm
The image is erect, virtual and has a size 2.5 cm.

Its position is 6.67 cm behind the mirror when needle is moved farther, the image moves towards the focus and its size goes on decreasing.

Question 3.
A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?
Answer:
Case I:
When tank is filled with water Actual depth of the needle in water, h1 = 12.5cm
Apparent depth of the needle in water, h2 =9.4cm
Refractive index of water = μ
The value μ can be obtained as follows
μ = \(\frac{\text { Actual depth }}{\text { Apparent depth }}\)
= \(\frac{h_{1}}{h_{2}}=\frac{12.5}{9.4}\) ≈ 1.33
Hence, the refractive index of water is about 1.33

Case II: When tank is filled with liquid
Water is replaced by a liquid of refractive index, μ’ = 1.63
The actual depth of the needle remains the same, but its apparent depth changes.
Let y be the new apparent depth of the needle. Hence, we can write the relation
μ’ = \(\frac{h_{1}}{y}\)
y = \(\frac{h_{1}}{\mu^{\prime}}=\frac{12.5}{1.63}\) = 7.67 cm
Hence, the new apparent depth of the needle is 7.67cm. It is less than h2 Therefore, to focus the needle again, the microscope should be moved up. Distance by which the microscope should be moved up =9.4-7.67 = 1.73 cm.

Question 4.
Figures 9.34 (a) and (b) show refraction of a ray in air incident at 60° with the normal to a glass air and water-air interface, respectively. Predict the angle of refraction in glass when the angle of incidence in water is 45° with the normal to a water-glass interface [Fig. 9.34 (c)]
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 4
Answer:
As per the given figure, for the glass-air interface
Angle of incidence, i = 60°
Angle of refraction, r = 35°
The relative refractive index of glass with respect to air is given by Snell’s law as
aμg = \( \frac{\sin i}{\sin r}\)
= \(\frac{\sin 60^{\circ}}{\sin 35^{\circ}}=\frac{0.8660}{0.5736}\) = 1.51 …………………….. (1)
As per the given figure, for the air-water interface
Angle of incidence, j = 600
Angle of refraction, r = 470
The relative refractive index of water with respect to air is given by Snell’s law as
wμw = \( \frac{\sin i}{\sin r}\)
= \(\frac{\sin 60^{\circ}}{\sin 47^{\circ}}=\frac{0.8660}{0.7314}\) = 1.184 …………………………… (2)

Using equations (1) and (2), the relative refractive index of glass with respect to water can be obtained as
wμg = \(\frac{a_{g}}{a_{w_{w}}}\)
= \( \frac{1.51}{1.184} \) = 1.275

The following figure shows the situation involving the glass-water interface
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 5
Angle of incidence, i = 45
Angle of reflection = r
From Snell’s law, r can be calculated as, \(\frac{\sin i}{\sin r}\) = wμg
\(\frac{\sin 45^{\circ}}{\sin r}\) = 1.275
sin r = \(\frac{\frac{1}{\sqrt{2}}}{1.275}=\frac{0.707}{1.275}\) = 0.5546
r = sin-1(0.5546) = 38.68°
Hence, the angle of refraction at the water-glass interface is 38.68°

Question 5.
A small bulb is placed at the bottom of a tank containirg water to a depth of 80 cm. What is the area of the surface of water through which light from the bulb can emerge out? Refractive index of water is 1.33 (Consider the bulb to be a point source.)
Answer:
Actual depth of the bulb in water, d1 = 80 cm = 0.8 m
Refractive index of water, μ = 1.33
The given situation is shown in the following figure
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 6
where,
i = Angle of Incidence
r = Angle of Refraction = 90°
Since the bulb is a point source, the emergent light can be considered as a circle of radius,
R = \(\frac{A C}{2}\) = AO = OC
Using Snell’s law, we can write the relation for the refractive index of water as
μ = \(\frac{\sin r}{\sin i}\)
1.33 = \(\frac{\sin 90^{\circ}}{\sin i}\)
i = sin-1\(\left(\frac{1}{1.33}\right)\) = 48.75°

Using the given figure, we have the relation
tan i = \(\frac{O C}{O B}=\frac{R}{d_{1}}\)
∴R = tan 48.75° x 0.8 = 0.91 m
∴ Area of the surface of water = πR2
= π(0.91)2
= 2.61 m2
Hence, the area of the surface of water through which the light from the bulb can emerge is approximately 2.61 m2.

Question 6.
A prism is made of glass of unknown refractive index. A parallel beam of light is incident on a face of the prism. The angle of minimum deviation is measured to be 40°. What is the refractive index of the material of the prism? The refracting angle of the prism is 60°. If the prism is placed in water (refractive index 1.33), predict the new angle of minimum deviation of a parallel beam of light.
Answer:
Angle of minimum deviation, δm = 40 °
Refracting angle of the prism, A = 60°
Refractive index of water, μ = 1.33
Let μ’ be the refractive index of the material of the prism.
The angle of deviation and refracting angle of the prism are related to refractive index (μ’) as
μ’ = \(\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)} \)
= \(\frac{\sin \left(\frac{60^{\circ}+40^{\circ}}{2}\right)}{\sin \left(\frac{60^{\circ}}{2}\right)}=\frac{\sin 50^{\circ}}{\sin 30^{\circ}}=\frac{0.766}{0.5}\)
= 1.532
Hence, the refractive index of the material of the prism is 1.532.
Since the prism is placed in water, let 8 ^ be the new angle of minimum deviation for the same prism.

The refractive index of glass with respect to water is given by the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 8
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 9
Hence, the new minimum angle of deviation is 10.32°.

Question 7.
Double-convex lenses are to be manufactured from a glass of refractive index 1.55, with both faces of the same radius of curvature. What is the radius of curvature required if the focal length is to be 20 cm?
Answer:
Lens maker formula is
\(\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\) …………………………………… (1)
If R is radius of curvature of double convex lens, then,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 10
∴ R = 2(n-1)f
Here, n =1.55, f = +20 cm
∴ R = 2 (1.55 -1) x 20 = 22 cm

Question 8.
A beam of light converges at a point P. Now a lens is placed in the path of the convergent beam 12 cm from P. At what point does the beam converge if the lens is (a) a convex lens of focal length 20 cm, and (b) a concave lens of focal length 16 cm?
Answer:
In the given situation, the object is virtual and the image formed is real.
Object distance, u = +12cm
(a) Focal length of the convex lens, f = 20 cm
Image distance = v
According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 11
∴ v = \(\frac{60}{8}\) = 7.5cm
Hence, the image is formed 7.5cm away from the lens, toward its right.

(b) Focal length of the concave lens, f = -16 cm
Image distance = v
According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 12
∴ v = 48 cm
Hence, the image is formed 48 cm away from the lens, toward its right.

Question 9.
An object of size 3.0 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Describe the image produced by the lens. What happens if the object is moved further away from the lens?
Answer:
Size of object O = 3.0 cm
u = -14 cm, f = -21 cm (concave lens)
∴ Formula \(\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\)
⇒ \(\frac{1}{v}=\frac{1}{f}+\frac{1}{u}\)
or \(\frac{1}{v}=\frac{1}{-21}+\frac{1}{-14}=-\frac{2+3}{42}\)
or v = \(-\frac{42}{5}\) = -8.4 cm
Size of image I = \(\frac{v}{u}\) O
= \(\frac{-8.4}{-14}\) x 3.0 cm = 1.8 cm

That is, image is formed at a distance of 8.4 cm in front of lens. The image is virtual, erect and of size 1.8 cm. As the object is moved farther from the lens, the image goes on shifting towards focus and its size goes on decreasing. The image is never formed beyond the focus of the concave lens.

Question 10.
What is the focal length of a convex lens of focal length 30 cm in contact with a concave lens of focal length 20 cm? Is the system
a converging or a diverging lens? Ignore thickness of the lenses.
Answer:
Given f1 = +30 cm, f2 = -20 cm
The focal length (F) of combination is given by
\(\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\)
⇒ F = \(\frac{f_{1} f_{2}}{f_{1}+f_{2}}\)
= \(\frac{30 \times(-20)}{30-20}\) = -60 cm
That is, the focal length of combination is 60 cm and it acts like a diverging lens.

Question 11.
A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at (a) the least distance of distinct vision (25cm), and (b) at infinity? What is the magnifying power of the microscope in each case?
Answer:
Focal length of the objective lens, f0 = 2.0 cm
Focal length of the eyepiece, fe = 6.25cm
Distance between the objective lens and the eyepiece, d = 15cm
(a) Least distance of distinct vision, d’ = 25cm
∴ Image distance for the eyepiece, ve = -25cm
Object distance for the eyepiece = ue
According to the lens formula, we have the relation
\(\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}\)
or \(\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}\)
= \(\frac{1}{-25}-\frac{1}{6.25}=\frac{-1-4}{25}=\frac{-5}{25}\)
∴ ue = -5cm
Image distance for the objective lens, v0 = d + ue =15-5 = 10 cm
Object distance for the objective lens = u0
According to the lens formula, we have the relation
\(\frac{1}{v_{o}}-\frac{1}{u_{o}}=\frac{1}{f_{o}}\)
\(\frac{1}{u_{0}}=\frac{1}{v_{0}}-\frac{1}{f_{0}}=\frac{1}{10}-\frac{1}{2}=\frac{1-5}{10}=\frac{-4}{10}\)
∴ u0=-2.5cm
Magnitude of the object distance, |u0| = 2.5 cm
The magnifying power of a compound microscope is given by the relation
m = \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d^{\prime}}{f_{e}}\right)\)
= \(\frac{10}{2.5}\left(1+\frac{25}{6.25}\right)\) = 4(1+4) = 20
Hence, the magnifying power of the microscope is 20.

(b) The final image is formed at infinity.
∴ Image distance for the eyepiece, ve = ∞
Object distance for the eyepiece = ue
According to the lens formula, we have the relation
\(\frac{1}{v_{o}}-\frac{1}{u_{o}}=\frac{1}{f_{o}}\)
\(\frac{1}{u_{o}}=\frac{1}{v_{o}}-\frac{1}{f_{o}}=\frac{1}{8.75}-\frac{1}{2.0}=\frac{2-8.75}{17.5}\)
∴ u0 = \(\frac{17.5}{6.75}\) = -2.59 cm
Magnitude of the object distance, |u0| = 2.59 cm
The magnifying power of a compound microscope is given by the relation
m = \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d^{\prime}}{f_{e}}\right)\)
= \(\frac{8.75}{2.59} \times\left(1+\frac{25}{6.25}\right)\) = 13.51
Hence, the magnifying power of the microscope is 13.51.

Question 12.
A person with a normal near point (25cm) using a compound microscope with objective of focal length 8.0 mm and an eyepiece of focal length 2.5 cm can bring an object placed at 9.0 mm from the objective in sharp focus. What is the separation between the two lenses? Calculate the magnifying power of the microscope.
Answer:
Focal length of the objective lens, f0= 8 mm = 0.8cm
Focal length of the eyepiece, fe = 2.5 cm
Object distance for the objective lens, u0 = -9.0 mm = -0.9 cm
Least distance of distant vision, d = 25 cm
Image distance for the eyepiece, ve = -d = -25 cm
Object distance for the eyepiece = ue

Using the lens formula, we can obtain the value of ue as
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 13
∴ ue = \(-\frac{25}{11}\) = -2.27 cm
We can also obtain the value of the image distance for the objective lens (v0) using the lens formula.
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 14
∴ v0 = 7.2 cm
The distance between the objective lens and the eyepiece = |ue|+v0
= 2.27+ 7.2 = 9.47cm
The magnifying power of the microscope is calculated as \(\frac{v_{o}}{\left|u_{o}\right|}\left(1+\frac{d}{f_{e}}\right)\)
= \(\frac{7.2}{0.9}\left(1+\frac{25}{2.5}\right)\)
= 8(1 +10) = 88
Hence, the magnifying power of the microscope is 88.

Question 13.
A small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length 6.0cm. What is the magnifying power of the telescope? What is the separation between the objective and the eyepiece?
Answer:
Focal length of the objective lens, f0 = 144 cm
Focal length of the eyepiece, fe = 6.0 cm
The magnifying power of the telescope is given as, m = \(\frac{f_{o}}{f_{e}}=\frac{144}{6}\) = 24
The separation between the objective lens and the eyepiece is calculated as
= fo + fe
= 144 + 6 = 150 cm
Hence, the magnifying power of the telescope is 24 and the separation between the objective lens and the eyepiece is 150 cm.

Question 14.
(a) A giant refracting telescope at an observatory has an objective lens of focal length 15 m. If an eyepiece of focal length 1.0 cm is used, what is the angular magnification of the telescope?
(b) If this telescope is used to view the moon, what is the diameter of the image of the moon formed by the objective lens? The diameter of the moon is 3.48 x 106 m, and the radius of lunar orbit is 3.8 x 108 m.
Answer:
(a) Given f0 = 15 m,
fe = 1.0 cm = 1.0 x 10-2 m
Angular magnification of telescope,
m = \(-\frac{f_{o}}{f_{e}}=-\frac{15}{1.0 \times 10^{-2}}\) = -1500
Negative sign shows that the final image is inverted.
(b) Let D be diameter of moon, d diameter of image of moon formed by objective and r be the distance of moon from objective lens, then
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 15

Question 15.
Use the mirror equation to deduce that:
(a) an object placed between f and 2f of a concave mirror produces a real image beyond 2f.
(b) a convex mirror always produces a virtual image independent of the location of the object.
(c) the virtual image produced by a convex mirror is always diminished In size and is located between the focus and the
pole.
(d) an object placed between the pole and focus of a concave mirror produces a virtual and enlarged image.
[Note: This exercise helps you deduce algebraically properties of images that one obtains from explicit ray diagrams.]
Answer:
(a) For a concave mirror, the focal length (f) is negative
∴ f<o
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u<O
For image distance v, we can write the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\) …………………………………… (1)
The object lies between f and 2f.
∴ 2f < u < f (∵ u and f are negative) ∴ \(\frac{1}{2 f}>\frac{1}{u}>\frac{1}{f}\)
\(-\frac{1}{2 f}<-\frac{1}{u}<-\frac{1}{f}\)
\(\frac{1}{f}-\frac{1}{2 f}<\frac{1}{f}-\frac{1}{u}<0\) ………………………………… (2)
Using equation (1), we get
\(\frac{1}{2 f}<\frac{1}{v}<0\)

∴ \(\frac{1}{v}\) is negative, i.e., v is negative.
\(\frac{1}{2 f}<\frac{1}{v}\) 2f > v
-v > -2 f
Therefore, the image lies beyond 2f.

(b) For a convex mirror, the focal length (f) is positive.
∴ f>o
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u<O
For image distance y, we have the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
Using equation (2), we can conclude that
\(\frac{1}{\nu}\) < 0 v v> 0
Thus, the image is formed on the back side of the mirror.
Hence, a convex mirror always produces a virtual image, regardless of the object distance.

(c) For a convex mirror, the focal length (f) is positive.
∴ f> 0
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u< 0
For image distance v, we have the mirror formula
\(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}\)
But we have u < 0 ∴ \(\frac{1}{v}>\frac{1}{f}\)
v < f
Hence, the image formed is diminished and is located between the focus (f) and the pole.

(d) For a concave mirror, the focal length (f) is negative.
∴ f< 0
When the object is placed on the left side of the mirror, the object distance (u) is negative.
∴ u< 0 It is placed between the focus (f) and the pole. ∴f > u > 0
\(\frac{1}{f}<\frac{1}{u}\) < 0 \(\frac{1}{f}-\frac{1}{u}\) > 0
For image distance v, we have the mirror formula
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 16
The image is formed on the right side of the mirror. Hence, it is a virtual image.
For u < 0 and v > 0, we can write
\(\frac{1}{u}>\frac{1}{v}\)
v > u
Magnification, m = \(\frac{v}{u}\) > 1 u
Hence, the formed image is enlarged.

Question 16.
A small pin fixed on a tabletop is viewed from above from a distance of 50 cm. By what distance would the pin appear to be raised if it is viewed from the same point through a 15 cm thick glass slab held parallel to the table? Refractive index of glass = 1.5. Does the answer depend on the location of the slab?
Answer:
Actual depth of the pin, d = 15cm
Apparent depth of the pin = d’
Refractive index of glass, µ = 1.5

Ratio of actual depth to the apparent depth is equal to the refractive index of glass, i.e.
µ = \(\frac{d}{d^{\prime}}\)
∴ d’ = \(\frac{d}{\mu}\)
= \(\frac{15}{1.5}\) = 10 cm
The distance at which the pin appears to be raised = d-d’=15-10 = 5 cm
For a small angle of incidence, this distance does not depend upon the location of the slab.

Question 17.
(a) Figure 9.35 shows a cross-section of a ‘light pipe’ made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for which total reflections inside the pipe take place, as shown in the figure.
(b) What is the answer if there is no outer covering of the pipe?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 17
Answer:
(a) Refractive index of the glass fibre, µ2 = 1.68
Refractive index of the outer covering of the pipe, µ1 =1.44
Angle of incidence = i
Angle of refraction = r
Angle of incidence at the interface = i’

The refractive index (µ) of the inner core-outer core interface is given as
µ = \(\frac{\mu_{2}}{\mu_{1}}=\frac{1}{\sin i^{\prime}}\)
sin i’ = \(\frac{\mu_{1}}{\mu_{2}}=\frac{1.44}{1.68}\) = 0.8571
∴ i’ = 59°

For the critical angle, total internal reflection (TIR) takes place only when i > i’. i.e., i > 59°
Maximum angle of reflection, rmax = 90°-i’ = 90°-59°= 31°
Let, imax be the maximum angle of incidence.
The refractive index at the air – glass interface, µ2 =1.68
µ2 = \(\frac{\sin i_{\max }}{\sin r_{\max }}\)
sin imax = µ2 sin rmax = 1.68 sin31°
= 1.68 x 0.5150
= 0.8652
∴imax = sin-1 (0.8652) ≈ 60°
Thus, all the rays incident at angles lying in the range 0 < i < 60° will suffer total internal reflection.

(b) If the outer covering of the pipe is not present, then
Refractive index of the outer pipe, µ1 = Refractive index of air = 1
For the angle of incidence i =90°, we can write Snell’s law at the air-pipe interface as
\(\frac{\sin i}{\sin r}\) = µ2 = 1.68
sin r = \(\frac{\sin 90^{\circ}}{1.68}=\frac{1}{1.68}\)
r = sin-1(0.5952)
∴ i’ = 90°-36.5°= 53.5°
Since i’ > r, all incident rays will suffer total internal reflection.

Question 18.
Answer the following questions:
(a) You have learnt that plane and convex mirrors produce virtual images of objects. Can they produce real images under some circumstances? Explain.
(b) A virtual image, we always say, cannot be caught on a screen. Yet when we ‘see’ a virtual image, we are obviously bringing it onto the ‘screen’(i.e., the retina) of our eye. Is there a contradiction?
(c) A diver underwater, looks obliquely at a fisherman standing on the bank of a lake. Would the fisherman look taller or shorter to the diver than what he actually is?
(d) Does the apparent depth of a tank of water change if viewed obliquely? If so, does the apparent depth increase or decrease?
(e) The refractive index of diamond is much greater than that – of ordinary glass. Is this fact of some use to a diamond cutter?
Answer:
(a) Yes, they produce real images under some circumstances. If the object is virtual, i.e., if the light rays converging at a point behind a plane mirror (or a convex mirror) are reflected to a point on a screen placed in front of the mirror, then a real image will be formed.

(b) No, there is no contradiction. A virtual image is formed when light rays diverge. The convex lens of the eye causes these divergent rays to converge at the retina. In this case, the virtual image serves as an object for the lens to produce a real image.

(c) The diver is in the water and the fisherman is on land (i.e., in the air). Water is a denser medium than air. It is given that the diver is viewing the fisherman. This indicates that the light rays are traveling from a denser medium to a rarer medium. Hence, the refracted rays will move away from the normal. As a result, the fisherman will appear to be taller.

(d) Yes, the apparent depth of a tank of water changes when viewed obliquely. This is because light bends on traveling from one medium to another. The apparent depth of the tank, when viewed obliquely, is less than the near-normal viewing.

(e) Yes, the refractive index of diamond (2.42) is more than that of ordinary glass (1.5). The critical angle for diamond is less than that for glass. A diamond cutter uses a large angle of incidence to ensure that the light entering the diamond is totally reflected from its faces. This is the reason for the sparkling effect of a diamond.

Question 19.
The image of a small electric bulb on the wall of a room is to be obtained on the opposite wall 3 m away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose? ’’
Answer:
Here, u + v = 3 m, :.v = 3 -u
From lens formula,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 18
or u = \(\frac{3 \pm \sqrt{3^{2}-4.3 f}}{2}\)
For real solution, 9 -12, f should be positive.
It., 9 -12f > 0
or 9 >12f.
or f < \(\frac{9}{12}\) < \(\frac{3}{4}\) m
∴ The maximum focal length of the lens required for the purpose is \(\frac{3}{4}\) m
i.e, fmax = 0.7 m

Question 20.
A screen is placed 90 cm from an object. The image of the object on the screen is formed by a convex lens at two different locations separated by 20 cm. Determine the focal length of the lens.
Answer:
Here, O is a position of object and I is position of image (screen).
Distance OI = 90 cm
L1 and L2 are the two positions of the lens.
∴ Distance between L1 and L2 = O1 O2 = 20 cm
For Position L1 of the Lens: Let x be the distance of the object from the lens.
∴ u1 = -x
∴ Distance of the image from the lens, v1 = +(90 – x)
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 19
If f be the focal length of the lens, then using lens formula,
\(-\frac{1}{u}+\frac{1}{v}=\frac{1}{f}\) we get
\(-\frac{1}{-x}+\frac{1}{90-x}=\frac{1}{f}\)
or \(\frac{1}{f}=\frac{1}{x}+\frac{1}{90-x}\) ……………………………….. (1)
For Position L2 of the Lens : Let u2 and v2 be the distances of the object and image from the lens in this position.
∴ u2=-(X + 20),
v2 = +[90-(x+20)] = +(70-x)
∴ Using lens formula,
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 20
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 21

Question 21.
(a) Determine the ‘effective focal length’ of the combination of the two lenses in Exercise 9.10, if they are placed 8.0 cm apart with their principal axes coincident. Does the answer depend on which side of the combination a beam of parallel light is incident? Is the notion of effective focal length of this system useful at all?

(b) An object 1.5 cm in size is placed on the side of the convex lens in the arrangement (a) above. The distance between the object and the convex lens is 40 cm. Determine the magnification produced by the two-lens system and the size of the image.
Answer:
Focal length of the convex lens, f1 = 30 cm
Focal length of the concave lens,f2 = -20 cm
Distance between the two lenses, d = 8.0 cm

(a)
(i) When the parallel beam of light is incident on the convex lens first.
According to the lens formula, we have
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, μ1 = Object distance = ∞, v1 = Image distance = ?
\(\frac{1}{v_{1}}=\frac{1}{30}-\frac{1}{\infty}=\frac{1}{30}\)
∴ v1 = 30 cm
The image will act as a virtual object for the concave lens. Applying lens formula to the concave lens, we have
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
where, u2 = Object distance = (30 – d) = 30 – 8 = 22 cm,
v2 = Image distance=?
\(\frac{1}{v_{2}}=\frac{1}{22}-\frac{1}{20}=\frac{10-11}{220}=\frac{-1}{220}\)
∴ v2 = -220 cm
The parallel incident beam appears to diverge from a point that is \(\left(220-\frac{d}{2}=220-\frac{8}{2}=220-4=216 \mathrm{~cm}\right)\) from the centre of the combination of the two lenses.

(ii) When the parallel beam of light is incident, on the concave lens first. According to the lens formula, we have
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
\(\frac{1}{v_{2}}=\frac{1}{f_{2}}+\frac{1}{u_{2}}\)
where, u2 = Object distance = -∞, v2 = Image distance = ?
\(\frac{1}{v_{2}}=\frac{1}{-20}+\frac{1}{-\infty}=-\frac{1}{20}\)
∴ v2 = -20 cm
The image will act as a real object for the .convex lens.
Applying lens formula to the convex lens, we have
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, u1 = Object distance = -(20 + d) = -(20 + 8) = -28 cm v1 = Image distance = ?
\(\frac{1}{v_{1}}=\frac{1}{30}+\frac{1}{-28}=\frac{14-15}{420}=\frac{-1}{420}\)
∴ v1 = -420 cm
Hence, the parallel incident beam appear to diverge from a point that is (420 – 4 = 416 cm) from the left of the centre of the combination of the two lenses. The answer depends on the side of the combination at which the parallel beam of light is incident. The notion of effective focal length does not seem to be useful for this combination.

(b) Height of the object, h1 =1.5 cm
Object distance from the side of the convex lens, u1 = -40 cm
|ui| = 40 cm

According to the lens formula
\(\frac{1}{v_{1}}-\frac{1}{u_{1}}=\frac{1}{f_{1}}\)
where, v1 = Image distance =?
\(\frac{1}{v_{1}}=\frac{1}{30}+\frac{1}{-40}=\frac{4-3}{120}=\frac{1}{120}\)
∴ v1 = 120 cm
Magnification, m= \(\frac{v_{1}}{\left|u_{1}\right|}=\frac{120}{40}\) = 3

Hence, the magnification due to the convex lens is 3.
The image formed by the convex lens acts as an object for the concave lens.
According to the lens formula
\(\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}\)
where,
u2 = Object distance = +(120 —8)=112 cm
v2= Image distance =?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 22
Magnification, m’ = \(\left|\frac{v_{2}}{u_{2}}\right|=\frac{2240}{92} \times \frac{1}{112}=\frac{20}{92}\)
Hence, the magnification due to the concave lens is \(\frac{20}{92}\)
The magnification produced by the combination of the two lenses is calculated as m x m’ = \(3 \times \frac{20}{92}=\frac{60}{92}\) = 0.652
The magnification of the combination is given as
\(\frac{h_{2}}{h_{1}}\) = 0.652
h2 = 0.652 x h1
where, h1 = Object size = 1.5 cm,
h2 = Size of the image
∴ h2 = 0.652 x 1.5 = 0.98 cm
Hence, the height of the image is 0.98 cm.

Question 22.
At what angle should a ray of light be incident on the face of a prism of refracting angle 60° so that it just suffers total internal reflection at the other face? The refractive index of the material of the prism is 1.524.
Answer:
The incident, refracted, and emergent rays associated with a glass prism ABC are shown in the given figure
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 23
Angle of prism, A = 60°
Refractive index of the prism, μ = 1.524
i1 = Incident angle
r2 = Refracted angle
r2 = Angle of incidence at the face
AC = e = Emergent angle = 90°

According to Snell’s law, for face AC, we can have sine
\(\frac{\sin e}{\sin r_{2}}\) = μ
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 24
It is clear from the figure that angle A = r1 + r2
According to Snell’s law, we have the relation
μ = \(\frac{\sin i_{1}}{\sin r_{1}} \)
sin i1 = μ sin r1
= 1.524 x sin19°= 0.496
∴ i1= 29.75°
Hence, the angle of incidence is 29.75°.

Question 23.
You are given prisms made of crown glass and flint glass with a wide variety of angles. Suggest a combination of prisms which will
(a) deviate a pencil of white light without much dispersion,
(b) disperse (and displace) a pencil of white light without much deviation.
Answer:
(a) Place the two prisms beside each other. Make sure that their bases are on the opposite sides of the incident white light, with their faces touching each other. When the white light is incident on the first prism, it will get dispersed. When this dispersed light is incident on the second prism, it will recombine and white light will emerge from the combination of the two prisms.

(b) Take the system of the two prisms as suggested in answer (a). Adjust (increase) the angle of the flint-glass-prism so that the deviations due to the combination of the prisms become equal. This combination will disperse the pencil of white light without much deviation.

Question 24.
For a normal eye, the far point is at infinity and the near point of distinct vision is about 25 cm in front of the eye. The cornea of . the eye provides a converging power of about 40 dioptres, and the least converging power of the eye-lens behind the cornea is about 20 dioptres. From this rough data estimate the range of accommodation (i.e., the range of converging power of the eye-lens) of a normal eye.
Answer:
Least distance of distinct vision, d = 25 cm
Far point of a normal eye, d’ = ∞
Converging power of the cornea, Pc = 40 D
Least converging power of the eye- lens, Pe = 20 D
To see the objects at infinity, the eye uses its least converging power.
Power of the eye-lens, P = Pc + Pe =40+20 = 60 D
Power of the eye-lens is given as
P = \(\frac{1}{\text { Focal length of the eye lens }(f)} \)
f = \(=\frac{1}{P}=\frac{1}{60 D}=\frac{100}{60}=\frac{5}{3}\) cm

To focus an object at the near point, object distance (u) = -d = -25 cm
Focal length of the eye-lens = Distance between the cornea and the retina = Image distance
Hence, image distance, v = \( \frac{5}{3}\) cm
According to the lens formula, we can write
\(\frac{1}{f^{\prime}}=\frac{1}{v}-\frac{1}{u}\)
Where f’ = Focal length
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 25
Power of the eye-lens = 64-40 = 24 D
Hence, the range of accommodation of the eye-lens is from 20 D to24D.

Question 25.
Does short-sightedness (myopia) or long-sightedness (hypermetropia) imply necessarily that the eye has partially lost its ability of accommodation? If not, what might cause these defects of vision?
Answer:
A myopic or hypermetropic person can also possess the normal ability of accommodation of the eye-lens. Myopia occurs when the eyeballs get elongated from front to back. Hypermetropia occurs when the eye-balls get shortened.
When the eye-lens loses its ability of accommodation, the defect is called presbyopia.

Question 26.
A myopic person has been using spectacles of power -1.0 dioptre for distant vision. During old age he also needs to use separate reading glass of power +2.0 dioptres. Explain what may have happened.
Answer:
The power of the spectacles used by the myopic person, P = -1.0 D
Focal length of the spectacles, f = \(\frac{1}{P}=\frac{1}{-1 \times 10^{-2}}\) = -100 cm
Hence, the far point of the person is 100 cm. He might have a normal near point of 25 cm. When he uses the spectacles, the objects placed at infinity produce virtual images at 100 cm.
He uses the ability of accommodation of the eye-lens to see the objects placed between 100 cm and 25 cm.
During old age, the person uses reading glasses of power, P’ = +2D The ability of accommodation is lost in old age.
This defect is called presbyopia. As a result, he is unable to see clearly the objects placed at 25 cm.

Question 27.
A person looking at a person wearing a shirt with a pattern comprising vertical and horizontal lines is able to see the vertical lines more distinctly than the horizontal ones. What is this defect due to? How is such a defect of vision corrected?
Answer:
In the given case, the person is able to see vertical lines more distinctly than horizontal lines. This means that the refracting system (cornea and eye-lens) of the eye is not working in the same way in different planes. This defect is tailed astigmatism. The person’s eye has enough curvature in the vertical plane. However, the curvature in the horizontal plane is insufficient. Hence, sharp images of the vertical lines are formed on the retina, but horizontal lines appear blurred. This defect can be corrected by using cylindrical lenses.

Question 28.
A man with normal near point (25cm) reads a book with small print using a magnifying glass: a thin convex lens of focal length 5 cm.
(a) What is the closest and the farthest distance at which he should keep the lens from the page so that he can read the book when viewing through the magnifying glass?
(b) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?
Answer:
(a) Focal length of the magnifying glass, f = 5 cm
Least distance of distinct vision, d = 25 cm
Closest object distance = u
Image distance, v = -d = -25 cm
According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 26
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 27
Hence, the closest distance at which the person can read the book is 4.167 cm.
For the object at the farthest distance (u’), the image distance (v’) = ∞

According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 28
∴ u’ = -5 cm
Hence, the farthest distance at which the person can read the book is 5 cm.
(b) Maximum angular magnification is given by the relation
αmax= \(\frac{d}{|u|}=\frac{25}{\frac{25}{6}} \) = 6
Minimum angular magnification is given by the relation
αmin = \(\frac{d}{\left|u^{\prime}\right|}=\frac{25}{5} \) = 5.

Question 29.
A card sheet divided into squares each of size 1 mm2 is being viewed at a distance of 9 cm through a magnifying glass (a converging lens of focal length 10 cm) held close to the eye.
(a) What is the magnification produced by the lens? How much is the area of each square in the virtual image?
(b) What is the angular magnification (magnifying power) of the lens?
(c) Is the magnification in (a) equal to the magnifying power in (b)?
Explain.
Answer:
(a) Area of each square, A = 1 mm2
Object distance, u = -9 cm
Focal length of the converging lens, f = 10 cm
For image distance v, the lens formula can be written as
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 29
∴ v = -90 cm
Magnification, m = \(=\frac{v}{u}=\frac{-90}{-9}\) =10
∴ Area of each square in the virtual image = (10)2A
= 102 x 1 =100 mm2 = 1 cm2
(b) Magnifying power of the lens = \(\frac{d}{|u|}=\frac{25}{9}\) = 2.8
(c) The magnification in (a) is not the same as the magnifying power in(b).
The magnification magnitude is \(\left(\left|\frac{v}{u}\right|\right)\) and the magnifying power is \(\left(\frac{d}{|u|}\right) \) .
The two quantities will be equal when the image is formed at the near point (25 cm).

Question 30.
(a) At what distance should the lens be held from the figure in Exercise 9.29 in order to view the squares distinctly with the maximum possible magnifying power?
(b) What is the magnification in this case?
(c) Is the magnification equal to the magnifying power in this case? Explain.
Answer:
(a) The maximum possible magnification is obtained when the image is formed at the near point (d = 25cm).
Image distance, v = -d = -25 cm
Focal length, f = 10 cm
Object distance = u
According to the lens formula, we have
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 30
∴ u = \(-\frac{50}{7}\) = -7.14 cm
Hence, to view the squares distinctly, the, lens should be kept 7.14 cm away from them. .
(b) Magnifying = \(\left|\frac{v}{u}\right|=\frac{25}{50}\) =3.5
(c) Magnifying power = \(\frac{d}{u}=\frac{25}{\frac{50}{7}}\) = 3.5
Since the image is formed at the near point (25 cm), the magnifying power is equal to the magnitude of magnification.

Question 31.
What should be the distance between the object in Exercise 9.30 and the magnifying glass if the virtual image of each square in the figure is to have an area of 6.25 mm2. Would you be able to see the squares distinctly with your eyes very close to the magnifier? [Note: Exercises 9.29 to 9.31 will help you clearly understand the difference between magnification in absolute size and the angular magnification (or magnifying power) of an instrument.]
Answer:
Area of the virtual image of each square, A = 6.25 mm
Area of each square, A0 = 1 mm2
Hence, the linear magnification of the object can be calculated as
m = \(\sqrt{\frac{A}{A_{0}}}=\sqrt{\frac{6.25}{1}} \) = 2.5
But m = \(\frac{\text { Image distance }(v)}{\text { Object distance }(u)} \)
∴ v = mu = 2.5 u
Focal length of the magnifying glass, f = 10 cm

According to the lens formula, we have the relation
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 31
∴ u = \(-\frac{1.5 \times 10}{2.5}\) = -6 cm
and v = 2.5 u = 2.5 x 6 = -15 cm
The virtual image is formed at a distance of 15 cm, which is less than the near point (i.e., 25 cm) of a normal eye. Hence, it cannot be seen by the eyes distinctly.

Question 32.
Answer the following questions:
(a) The angle subtended at the eye by an object is equal to the angle subtended at the eye by the virtual image produced by a magnifying glass. In what sense then does a magnifying glass provide angular magnification?
(b) In viewing through a magnifying glass, one usually positions one’s eyes very close to the lens. Does angular magnification change if the eye is moved back?
(c) Magnifying power of a simple microscope is inversely proportional to the focal length of the lens. What then stops us from using a convex lens of smaller and smaller focal length and achieving greater and greater magnifying power?
(d) Why must both the objective and the eyepiece of a compound microscope have short focal lengths?
(e) When viewing through a compound microscope, our eyes should be positioned not on the eyepiece but a short distance away from it for best viewing. Why? How much should be that short distance between the eye and eyepiece?
Answer:
(a) Though the image size is bigger than the object, the angular size of the image is equal to the angular size of the object. A magnifying glass helps one see the objects placed closer than the least distance of distinct vision (i.e., 25 cm). A closer object causes a larger angular size. A magnifying glass provides angular magnification. Without magnification, the object cannot be placed closer to the eye. With magnification, the object can be placed much closer to the eye.

(b) Yes, the angular magnification changes when the distance between the eye and a magnifying glass is increased, the angular magnification decreases a little. This is because the angle subtended at the eye is slightly less than the angle subtended at the lens. Image distance does not have any effect on angular magnification.

(c) The focal length of a convex lens cannot be decreased by a greater amount. This is because making lenses having very small focal lengths is not easy. Spherical and chromatic aberrations are produced by a convex lens having a very small focal length.

(d) The ang lar magificarin produced by’the eyepiece of a compound microscope is \(\left[\left(\frac{25}{f_{e}}\right)+1\right]\)
Where fe = Focal length of the eyepiece
It can be inferred that fe is small, then angular magnification of the eyepiece will be large.
The angular magnification of the objective lens of a compound microscope is given as
\(\frac{1}{\left(\left|u_{o}\right| f_{o}\right)}\)
Where, u0 = Object distance for the objective lens, f0 = Focal length of the objective
The magnification is large when u0> f0 . In the case of a microscope, the object is kept close to the objective lens. Hence, the object distance is very little.
Since u0 is small, f0 will be even smaller. Therefore, fe and f0 are both small in the given condition.

(e) When we place our eyes too close to the eyepiece of a compound microscope, we are unable to collect much-refracted light. As a result, the field of view decreases substantially. Hence, the clarity of the image gets blurred.
The best position of the eye for viewing through a compound microscope is at the eye-ring attached to the eyepiece. The precise location of the eye depends on the separation between the objective lens and the eyepiece.

Question 33.
An angular magnification (magnifying power) of 30X is desired using an objective of focal length 1.25 cm and an eyepiece of focal length 5 cm. How will you set up the compound microscope?
Answer:
Focal length of the objective lens, f0 = 1.25 cm
Focal length of the eyepiece, fe = 5 cm
Least distance of distinct vision, d = 25 cm

Angular magnification of the compound microscope = 30X
Total magnifying power of the compound microscope, m = 30
The angular magnification of the eyepiece is given by the relation
me = \(\left(1+\frac{d}{f_{e}}\right)=\left(1+\frac{25}{5}\right)\) = 1+5 = 6
The angular magnification of the objective lens (m0) is related to me as
mome=m
or m0 = \(\frac{m}{m_{e}}=\frac{30}{6}\) = 5

We also have the relation
m = \( \frac{\text { Image distance for the objective lens }\left(v_{o}\right)}{\text { Object distance for the objective lens }\left(-u_{0}\right)}\)
5 = \(\frac{v_{o}}{-u_{o}}\)
∴ v0 = -5u0 …………………………….. (1)
Applying the lens formula for the objective lens
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 32
and v0 = -5u0
= -5 x (-1.5) = 7.5 cm
The object should be placed 1.5 cm away from the objective lens to obtain the desired magnification.
Applying the lens formula for the eyepiece
\(\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}\)
where,
ve = Image distance for the eyepiece = -d = -25 cm
ue = Object distance for the eyepiece
\(\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}=\frac{-1}{25}-\frac{1}{5}=-\frac{6}{25}\)
ue =-4.17 cm
Separation between the objective lens and the eyepiece = \(\left|u_{e}\right|+\left|v_{o}\right|\)
= 4.17 + 7.5 = 11.67 cm
Therefore, the separation between the objective lens and the eyepiece should be 11.67 cm.

Question 34.
A small telescope has an objective lens of focal length 140 cm and an eyepiece of focal length 5.0 cm. What is the magnifying power of the telescope for viewing distant objects when
(a) the telescope is in normal adjustment (i.e., when the final image is at infinity)?
(b) the final image is formed at the least distance of distinct vision (25 cm)?
Answer:
Focal length of the objective lens, f0 =140 cm
Focal length of the eyepiece, fe = 5 cm
Least distance of distinct vision, d = 25 cm
(a) When the telescope is in normal adjustment, its magnifying power is given as
m = \(\frac{f_{o}}{f_{e}}=\frac{140}{5} \) = 28
(b) When the final image is formed at d, the magnifying power of the telescope is given as
\(\frac{f_{o}}{f_{e}}\left[1+\frac{f_{e}}{d}\right]=\frac{140}{5}\left[1+\frac{5}{25}\right]\)
= 28[1 +0.2] = 28×1.2 = 33.6

Question 35.
(a) For the telescope described in Exercise 9.34 (a), what is the separation between the objective lens and the eyepiece?
(b) If this telescope is used to view a 100 m tall tower 3 km away, what is the height of the image of the tower formed by the objective lens?
(c) What is the height of the final image of the tower if it is formed at 25 cm?
Answer:
Focal length of the objective lens, f0 =140 cm
Focal length of the eyepiece, fe= 5 cm
(a) In normal adjustment, the separation between the objective lens and the eyepiece = f0 + fe = 140 + 5 = 145 cm
(b) Height of the tower, h1 = 100 m
Distance of the tower (object) from the telescope, u = 3 km = 3000 m
The angle subtended by the tower at the telescope is given as
θ’ = \(\frac{h_{2}}{f_{o}}=\frac{h_{2}}{140}\) rad
where,
h2 = Height of the image of the tower formed by the objective lens
\(\frac{1}{30}=\frac{h_{2}}{140}\) (∵θ=θ’)
∴ h2 = \(\frac{140}{30}\) = 4.7 cm
Therefore, the objective lens forms a 4.7 cm tall image of the tower.

(c) Image is formed at a distance, d = 25 cm
The magnification of the eyepiece is given by the relation
m = 1 + \(\frac{d}{f_{e}}\)
= 1+ \(\frac{25}{5}\) =1 + 5 = 6
Height of the final image = mh2 = 6 x 4.7 = 28.2 cm
Hence, the height of the final image of the tower is 28.2 cm.

Question 36.
A Cassegrain telescope uses two mirrors as shown in Fig. 9.33. Such a telescope is built with the mirrors 20 mm apart.
If the radius of curvature of the large mirror is 220 mm and the small mirror is 140 mm, where will the final image of an object at infinity be?
Answer:
Given, r1 = 220 mm, f1 = \(\frac{r_{1}}{2}\) = 110 mm = 11 cm
r2 = 140 mm, f2 = \(\frac{r_{2}}{2}\) = 70 mm = 7.0 cm
Distance between mirrors, d = 20 mm = 2.0 cm
The parallel incident rays coming from distant objects fall on the concave mirror and try to be focused at the principal focus of concave lens, i. e., v1 = -f1 = -11 cm
But in the path of rays reflected from concave mirror, a convex mirror is placed. Therefore the image formed by the concave mirror acts as a virtual object for convex mirror.
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 33
For convex mirror f2 = -7.0 cm, u2 = -(11 -2) = -9 cm
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 34
v2 = \(-\frac{63}{2}\) cm = -31.5 cm
This is the distance of the final image formed by the convex mirror. Thus, the final image is formed at a distance of 31.5 cm from the smaller (convex) mirror behind the bigger mirror.

Question 37.
Light incident normally on a plane mirror attached to a galvanometer coil retraces backward as shown in Fig. 9.36. A current in the coil produces a deflection of 3.5° of the mirror. What is the displacement of the reflected spot of light on a screen placed 1.5 m away?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 35
Answer:
Angle of deflection, θ = 3.5°
Distance of the screen from the mirror, D = 1.5 m
The reflected rays get deflected by an amount twice the angle of deflection i.e., 2θ = 2 x 3.5 = 7.0°
The displacement (d) of the reflected spot of light on the screen is given as
tan 2θ = \(\frac{d}{1.5}\) d =1.5 x tan7°= 0.184 m = 18.4 cm
Hence, the displacement of the reflected spot of light is 18.4 cm.

Question 38.
Figure 9.37 shows an biconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror.
A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0 cm. The liquid is removed and the experiment is repeated. The new distance is measured to he 30.0 cm. What is the refractive index of the liquid?
PSEB 12th Class Physics Solutions Chapter 9 Ray Optics and Optical Instruments 36
Answer:
Focal length of the convex lens, f1 = 30 cm
The liquid acts as a mirror. Focal length of the liquid = f2
Focal length of the system (convex lens + liquid), f = 45 cm
For a pair of optical systems placed in contact, the equivalent focal length is given as
\(\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\)
\(\frac{1}{f_{2}}=\frac{1}{f}-\frac{1}{f_{1}}\)
= \(\frac{1}{45}-\frac{1}{30}=-\frac{1}{90}\)
∴ f2 = -90 cm
Let the refractive index of the lens be μ1 and the radius of curvature of one surface be R. Hence, the radius of curvature of the other surface is R.
R can be obtained using the relation \(\frac{1}{f_{1}}=\left(\mu_{1}-1\right)\left(\frac{1}{R}+\frac{1}{-R}\right)\)
\(\frac{1}{30}=(1.5-1)\left(\frac{2}{R}\right)\)
∴ R = \(\frac{30}{0.5 \times 2}\) = 30 cm

Let μ2 be the refractive index of the liquid.
Radius of curvature of the liquid on the side of the plane minor = ∞
Radius of curvature of the liquid on the side of the lens, R = -30 cm
The value of μ2, can be calculated using the relation
\(\frac{1}{f_{2}}=\left(\mu_{2}-1\right)\left[\frac{1}{-R}-\frac{1}{\infty}\right]\)
\(\frac{-1}{90}=\left(\mu_{2}-1\right)\left[\frac{1}{+30}-0\right]\)
μ2 – 1 = \(\frac{1}{3} \)
∴ μ2 = \(\frac{4}{3} \) = 133
Hence, the refractive index of the liquid is 1.33.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 6 Electromagnetic Induction Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 6 Electromagnetic Induction

PSEB 12th Class Physics Guide Electromagnetic Induction Textbook Questions and Answers

Question 1.
Predict the direction of induced current in the situations described by the following Figs. 6.18 (a) to (f).
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 1
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 2
Answer:
(a) As the magnet moves towards the solenoid, the magnetic flux linked with the solenoid increases. According to Lenz’s law, the induced e.m.f. produced in the solenoid in such that it opposes the very cause producing it i. e., it opposes the motion of the magnet. Hence the face q of it becomes the south pole and p becomes north pole. Therefore, the current will flow along pqin the coili. e., along qrpqin this figurei. e., clockwise when seen from the side of the magnet according to clock rule.

(b) As the north pole moves away from xy coil, so the magnetic flux linked with this coil decreases. Thus according to Lenz’s law, the induced e.m.f. produced in the coil will oppose the motion of the magnet. Hence the face, X becomes S-pole, so the current will flow in the clockwise direction i.e., along yzx in the cone.

For coil pq, the south pole of the magnet moves towards end q and thus this end will acquire south polarity so as to oppose the motion of the magnet, hence the current will flow along prq in the coil.

(c) The induced current will be in the anticlockwise direction i.e., along yzx.

(d) The induced current will be in the clockwise direction i.e., along zyx.

(e) The battery current in the left coil will be from right to left, so by mutual induction, the induced current in the right coil will be in the opposite direction i.e., from left to right or along xry.

(f) In this case, there is no change in magnetic flux linked with the wire, so no current will flow through the wire since there is no induced current as the field lines lie in the plane of the loop.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 2.
Use Lenz’s law to determine the direction of induced current in the situations described by Fig. 6.19.
(a) A wire of irregular shape turning into a circular shape;
(b) A circular loop being deformed into a narrow straight wire.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 3
(a) When a wire of irregular shape turns into a circular loop, the magnetic flux linked with the loop increases due to increase in area. The circular loop has greater area than the loop of irregular shape. The induced e.m.f. will cause current to flow in such a direction so that the wire forming the loop is pulled inward from all sides i.e., current must flow in the direction adcba as shown in Fig. (a) i.e., in anticlock-wise direction so that the magnetic field produced by the current ((directed out of the paper) opposes the applied field.

In Fig. (b), a circular loop deforms into a narrow straight wire i.e., upper side of loop should move downwards and lower end should move upwards to oppose the motion of the circular loop, thus its area decreases as a result of which the magnetic flux linked with it decreases. To oppose the decrease in magnetic flux, the induced current should flow anti clockwise in the loop i. e., along a’d’ d b’ a’. Due to the flow of anti-clockwise current, the magnetic field produced will be out of the page and hence the applied field is supplemented.

Question 3.
A long solenoid with 15 turns per cm has a small loop of area 2.0 cm2 placed inside the solenoid normal to its axis. If the current carried hy the solenoid changes steadily from 2.0 A to
4.0 A in 0.1 s, what is the induced emf in the loop while the current is changing?
Answer:
Number of turns per unit length of the solenoid, n = 15 turns/cm = 1500 turns/m
The solenoid has a small loop of area, A = 2.0 cm2 = 2 × 10-4 m2
Current carried by the solenoid changes from 2 A to 4 A.
.-. Change in current in the solenoid, dI = 4 – 2 = 2A
Change in time, dt = 0.1 s
We know that the magnetic field produced inside the solenoid is given by
B = μ0nI
If Φ be the magnetic flux linked with the loop, then
Φ = BA = μ0nI A
Induced emf in the solenoid is given by Faraday’s law as
e = –\(\frac{d \phi}{d t}\)
e = – \(\frac{d}{d t}\) (Φ) = –\(\frac{d}{d t}\) μ0nI A
μ0n A \(\frac{d I}{d t}\)
∴ Magnitude of e is given by
= A μ0n × (\(\frac{d I}{d t}\))
= 2 × 10-4 × 4π × 10-7 × 500 × \(\frac{2}{0.1}\)
7.54 × 10 -6 V
Hence, the induced voltage in the loop is = 7.54 × 10 -6 V

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 4.
A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is 1 cm s-1 in a direction normal to the (a) longer side, (b) shorter side of the loop? For how long does the induced voltage last in each case?
Answer:
Length of the rectangular wire, l = 8 cm = 0.08 m
Width of the rectangular wire, b = 2 cm = 0.02 m
Hence, area of the rectangular loop A = lb
= 0.08 × 0.02
= 16 × 10-4 m2
Magnetic field strength, B = 0.3 T
Velocity of the loop, v = 1 cm/s = 0.01 m / s

(a) Emf developed in the loop is given as
e = Blv
= 0.3 × 0.08 × 0.01 = 2.4 × 10-4 V
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 4
= \(\frac{b}{v}\) = \(\frac{0.02}{0.01}\) = 2 s
Hence, the induced voltage is 2.4 × 10-4 V which lasts for 2s.

(b) Emf developed,
e = Bbv = 0.3 × 0.02 × 0.01 = 0.6 × 10-4 V
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 5
\(\frac{l}{v}\) = \(\frac{0.08}{0.01}\) 8s
Hence, the induced voltage is 0.6 × 10-4 V which lasts for 8 s.

Question 5.
A 1.0 m long metallic rod is rotated with an angular frequency of 400 rad s-1 about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.
Answer:
Length of the rod, l = 1m
Angular frequency, ω = 400 rad/s
Magnetic field strength, B = 0.5 T
One end of the rod has zero linear velocity, while the other end has a linear velocity of l ω.
Average linear velocity of the rod, v = \(\frac{l \omega+0}{2}=\frac{l \omega}{2}\)
Emf developed between the centre and the ring,
e = Blv = Bl(\(\frac{l \omega}{2}\)) = \(\frac{B l^{2} \omega}{2}\)
= \(\frac{0.5 \times(1)^{2} \times 400}{2}\) = 100V
Hence, the emf developed between the centre and the ring is 100 V.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 6.
A circular coil of radius 8.0 cm and 20 turns is rotated about its vertical diameter with an angular speed of 50 rad s-1 in a uniform horizontal magnetic field of magnitude 3.0 × 10-2 T. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10 Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?
Answer:
Here, n = number of turns in the coil = 20
r = radius ofcoil = 8.0 cm = 8 × 10-2 m
ω = angular speed of the coil = 50 rad s-1.
B = magnetic field = 3.0 × 10-2 T
Let e0 be the maximum e.m.f. in the coil = ?
and eav be the average e.m.f. in the coil = ?
We know that the instantaneous e.m.f. produced in a coil is given by
e = BA ω sinωt.
for e to be maximum emax, sin ωt = 1.
∴ emax = B A n ω = B.πr2
where A = πr2 is the area of the coil
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 6
i.e., eav is zero as the average value of sincot for one complete cycle is always zero.
Now R = resistance of the closed loop formed by the coil = 10 Ω
Let Imax = maximum current in the coil = ?
∴ Using the relation,
Imax = \(\frac{e_{\max }}{R}\), we get
Imax = \(\frac{0.603}{10}\) = 0.0603 A
Let Pav be the average power loss due to Joule heating = ?
∴ Pav = \(\frac{e_{\max } \cdot I_{\max }}{2}\) = \(\frac{0.603 \times 0.0603}{2}\)
= 0.018 Watt
The induced current causes a torque opposing the rotation of the coil. An external agent must supply torque and do work to counter this torque in order to keep the coil rotating uniformly. Thus the source of the power dissipated as heat in the coil is the external agent i. e., rotor.

Question 7.
A horizontal straight wire 10 m long extending from east to west is falling with a speed of 5.0 m s-1, at right angles to the horizontal component of the earth’s magnetic field, 0.30 × 10-4 Wb m-2.
(a) What is the instantaneous value of the emf induced in the wire?
(b) What is the direction of the emf?
(c) Which end of the wire is at the higher electrical potential?
Answer:
Length of the wire, l = 10 m
Falling speed of the wire, v = 5.0 m/s
Magnetic field strength, B = 0.3 × 10-4 Wb m-2

(a) emf induced in the wire,
e = Blv = 0.3 × 10-4 × 5 × 10
= 1.5 × 10-3 V

(b) Using Fleming’s right hand rule, it can be inferred that the direction of the induced emf is from west to east.

(c) The eastern end of the wire is at a higher electrical potential.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 8.
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Initial current, I1 = 5.0 A
Final current, I2 = 0.0 A
Change in current, dl = I1 – I2 = 5 – 0 = 5 A
Time taken for the change, dt = 0.1 s
Average emf, e = 200 V
For self-inductance (I) of the circuit, we have the relation for average emf as
e = L\(\frac{d I}{d t}\)
L = \(\frac{e}{\left(\frac{d I}{d t}\right)}\)
= \(\frac{200}{\frac{5}{0.1}}=\frac{200 \times 0.1}{5}\) 4H
Hence, the self induction of the circuit is 4 H.

Question 9.
A pair of adjacent coils has a mutual inductance of 1.5 H. If the current in one coil changes from 0 to 20 A in 0.5 s, what is the change of flux linkage with the other coil?
Answer:
Mutual inductance of the pair of coils, μ = 1.5 H
Initial current, I1 = 0 A
Final current, I2 – 20 A
Change in current, dI = I2 – I1 = 20 – 0 = 20 A
Time taken for the change, dt = 0.5 s
Induced emf, e = \(\frac{d \phi}{d t}\) ………… (1)

Where d Φ is the change in the flux linkage with the coil.
Emf is related with mutual inductance as
e = μ\(\frac{d I}{d t}\) ……………. (2)
Equating equations (1) and (2), we get
\(\frac{d \phi}{d t}\) = μ\(\frac{d I}{d t}\)
or dΦ = μdI
∴ dΦ = 1.5 × (20) = 30 Wb
Hence, the change in the flux linkage is 30 Wb.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 10.
A jet plane is travelling towards west at a speed of 1800 km/h. What is the voltage difference developed between the ends of the wings having a span of 25 m, if the Earth’s magnetic field at the location has a magnitude of 5 × 10-4 T and the dip angle is 30°.
Answer:
Speed of the jet plane, v = 1800 km/h = 1800 × \(\frac{5}{18}\) = 500 m/s
Wing span of the jet plane, l = 25 m
Earth’s magnetic field strength, B = 5.0 × 10-4 T
Angle of dip, δ = 30°
Vertical component of Earth’s magnetic field,
BV = B sinδ
= 5 × 10-4 × sin30°
= 5 × 10-4 × \(\frac{1}{2}\) = 2.5 × 10-4 T
Voltage difference between the ends of the wing can be calculated as
e = (BV) × l × v
= 2.5 × 10-4 × 25 × 500 = 3.125 V
Hence, the voltage difference developed between the ends of the wings is 3.125 V.

Question 11.
Suppose the loop in Exercise 6.4 is stationary but the current feeding the electromagnet that produces the magnetic field is gradually reduced so that.the field decreases from its initial value of 0.3 T at the rate of 0.02 Ts-1. If the cut is joined and the loop has a resistance of 1.6 Ω, how much power is dissipated by the loop as heat? What is the source of this power?
Answer:
Sides of the rectangular wire loop are 8 cm and 2 cm.
Hence, area of the rectangular wire loop,
A = length × width = 8 × 2 = 16 cm
= 16 × 10-4 m2
Initial value of the magnetic field, B = 0.3 T
Rate of decrease of the magnetic field, \(\frac{d B}{d t}\) = 0.02 T/s
emf developed in the loop is given as
e = \(\frac{d \phi}{d t}\)
where, Φ = Change in flux through the loop area
= AB
∴ e = \(\frac{d(A B)}{d t}=\frac{A d B}{d t}\)
= 16 × 10-4 × 0.02 =0.32 × 10-4 V
= 3.2 × 10-5 V
Resistance of the loop, R = 1.6 Ω
The current induced in the loop is given as
i = \(\frac{e}{R}\)
= \(\frac{0.32 \times 10^{-4}}{1.6}\) = 2 × 10-5A
Power dissipated in the loop in the form of heat is given as
P = i2R
= (2 × 10-5)2 × 1.6
= 6.4 × 10-10 W
The source of this heat loss is an external agent, which is responsible for changing the magnetic field with time.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 12.
A square loop of side 12 cm with its sides parallel to X and F axes is moved with a velocity of 8 cm s-1 in the positive x-direction in an environment containing a magnetic field in the positive 2-direction. The field is neither uniform in space nor constant in time. It has a gradient of 10-3 T cm-1 along the negative jtr-direction (that is it increases by 10-3 T cm-1 as one moves in the negative x-direction), and it is decreasing in time at the rate of 10-3 T s1. Determine the direction and magnitude of the induced current in the loop if its resistance is 4.50 mΩ.
Answer:
Here, a = side of the square loop = 12 cm = 12 × 10-2 m
\(\vec{v}\) = velocity of loop parallel to x-axis = 8 cms-1
= 8 × 10-2 ms-1.
Let B = variable magnetic field acting away from us ⊥ ar to the XY plane along z axis i. e., plane of paper represented by x.
\(\) = 10-3 Tcm-1
= 10-3 × 102 Tm-1
= 0.1 Tm-1
= field gradient along – ve x direction.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 7
\(\frac{d B}{d t}\) = rate of variation with me
= 10-3 Ts-1
R = resistance of the loop = 4.5 mΩ = 4.5 × 10-3 Ω
Let I = induced current = ? and its direction = ?
∴ A = area of loop = a2 = (12 × 10-2)2 m2 = 144 × 10-4 m2.
The magnetic flux changes (i) due, to the variation of B with time and
(ii) due to motion of the loop in non-uniform \(\vec{B}\).
Thus if Φ be the total magnetic flux of the loop, then Φ is calculated as Area of shaded part = adx
Let dΦ = magnetic flux linked with shaded part = B(x,t)adx
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 8
∴ From (3), \(\) = 144 × 10-7 + 1152 × 10-7
= 1296 × 10-7 Wbs-1
Clearly the two effect add up as these cause a decrease in flux along the + z direction.
∴ If e be the induced e.m.f. produced, then
e = –\(\frac{d \phi}{d t}\) = -1296 × 10-7 V
= -12.96 × 10-5 V
∴ e = 12.96 × 10-5 V
∴ I = \(\frac{e}{R}\) = \(\frac{12.96 \times 10^{-5}}{4.5 \times 10^{-3}}\) 2.88 × 10-2 A.
The direction of induced current is such as to increase the flux through the loop along +z-direction. Thus if for the observer, the loop moves to the right, the current will be seen to be anti-clockwise.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 13.
It is desired to measure the magnitude of field between the poles of a powerful loud speaker magnet. A small fiat search coil of area 2 cm2 with 25 closely wound turns, is positioned normal to the field direction, and then quickly snatched out of the field region. Equivalently, one can give it a quick 90° turn to bring its plane parallel to the field direction. The total charge flown in the coil (measured by a ballistic galvanometer connected to coil) is 7.5 mC. The combined resistance of the coil and the galvanometer is 0.50 Q. Estimate the field strength of magnet.
Answer:
Area of the small flat search coil, A = 2cm2 = 2 × 10-4m2
Number of turns on the coil, N = 25
Total charge flown in the coil, Q = 7.5 mC = 7.5 × 10 -3 C
Total resistance of the coil and galvanometer, R = 0.50 Ω
Induced current in the coil,
I = \(\frac{\text { Induced emf }(e)}{R}\) ………….. (1)
Induced emf is given us
e = -N\(\frac{d \phi}{d t}\) ……………… (2)
Combining equations (1) and (2), we get
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 9
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 10
Hence, the field strength of the magnet is 0.75 T.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 14.
Figure 6.20 shows a metal rod PQ resting on the smooth rails AB and positioned between the poles of a permanent magnet. The rails, the rod, and the magnetic Held are in three mutual perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the rod = 15 cm, B = 0.50 T, resistance of the closed loop containing the rod = 9.0 mfl. Assume the field to be uniform.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 11
(a) Suppose K is open and the rod is moved with a speed of 12 cm s-1 in me airection snown. dive me polarity ana magnitude of the induced emf.

(b) Is there an excess charge built up at the ends of the rods when K is open? What if K is closed?

(c) With K open and the rod moving uniformly, there is no net force on the electrons in the rod PQ even though they do experience magnetic force due to the motion of the rod. Explain.

(d) What is the retarding force on the rod when K is closed?

(e) How much power is required (by an external agent) to keep the rod moving at the same speed (= 12 cm s-1) when K is closed? How much power is required when K is open?

(f) How much power is dissipated as heat in the closed circuit? What is the source of this power?

(g) What is the induced emf in the moving rod if the magnetic field is parallel to the rails instead of being perpendicular?
Answer:
Here, B = 0.50 T
l = length of the rod = 15 cm = 15 × 10-2 m
R = resistance of the closed loop containing the rod = 9.0 mΩ
= 9 × 10-3 Ω.

(a) v = speed of the rod = 12 cms-1 = 12 × 10-2 ms-1.
The magnitude of the induced e.m.f. is
E = Blv = 0.50 × 15 × 10-2 × 12 × 10-12 = 9 × 10-3 V
According to Fleming’s left hand rule, the direction of Lorentz force —^ ^ ^
\(\vec{F}\) = -e(\(\vec{V} \times \vec{B}\)) on electrons in PQ is from P to Q. So the end P of the rod will acquire positive charge and Q will acquire negative charge,

(b) Yes. When the switch K is open, the electrons collect at the end Q, so excess charge is built up at the end Q. But when the switch K is closed, the accumulated charge at the end Q is maintained by the continuous flow of current.

(c) This is because the presence of excess charge at the ends P and Q of the rod sets up an electric field \(\vec{E}\). The force due to the electric field (q\(\vec{E}\)) balances the Lorentz magnetic force q(\(\vec{V} \times \vec{B}\)). Hence the net force on the electrons is zero.

(d) When the key K is closed, current flows through the rod. The retarding force experienced by the rod is
F = BIl = B(\(\frac{E}{R}\)) l
where, I = \(\) is the induced current. R
F = \(\frac{0.50 \times 9 \times 10^{-3} \times 15 \times 10^{-2}}{9 \times 10^{-3}}\)
= 7.5 × 10-2 N.

(e) The power required by the external agent against the above retarding force to keep the rod moving uniformly at speed 12 cms-1 (= 12 × 10-2 m/s) when K is closed is given by
p = FV = 7. 5 × 10-2 × 12 × 10-2
= 90 × 10-4 W
= 9 × 10-3 W

(f) Power dissipated as heat is given by
P = I2R = (\(\frac{E}{R}\))2 R = \(\frac{E^{2}}{R}\)
= \(\frac{\left(9 \times 10^{-3}\right)^{2}}{9 \times 10^{-3}}\)
= 9 × 10-3 W.
The source of this power is the power provided by the external agent calculated in (e).

Zero. This is because when the magnetic field is parallel to the rails, θ = 0°, so induced e.m.f. E = Blv sinθ = Blv sin 0 = 0. In this situation, the moving rod does not cut the field lines, so there is no change in the magnetic flux, hence E = 0.

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 15.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 500, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3 s. How much is the average back emf induced across the ends of the open switch in the circuit? Ignore the variation in magnetic Held near the ends of the solenoid.
Answer:
Length of the solenoid, l = 30 cm = 0.3 m
Area of cross-section, A = 25 cm2 = 25 x 10-4 m2
Number of turns on the solenoid, N = 500
Current in the solenoid, I = 2.5 A
Current flows for time, t = 10-3 s
Average back emf, e = \(\frac{d \phi}{d t}\) ……………. (1)
where,
dΦ = NAB ………….. (2)
and B = μ0 \(\frac{N I}{l}\) …………. (3)
Using equations (2) and (3) in equation (1), we get
e = \(\frac{\mu_{0} N^{2} I A}{l t}\)
\(=\frac{4 \pi \times 10^{-7} \times(500)^{2} \times 2.5 \times 25 \times 10^{-4}}{0.3 \times 10^{-3}}\)
= 6.5 V
Hence, the average back emf induced in the solenoid is 6.5 V.

Question 16.
(a) Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in Figure 6.21.
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 12
(b) Now assume that the straight wire carries a current of 50 A and the loop is moved to the right with a constant velocity, v = 10 m/s.
Calculate the induced emf in the loop at the instant when x = 0.2 m.
Take a = 0.1 m and assume that the loop has a large resistance.
Answer:
(a) Take a small element dy in the loop at a distance y from the long straight wire (as shown in the given figure).
Magnetic flux associated with element dy, dΦ = BdA
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 13
= where,
dA = Area of element dy = a dy
B = Magnetic field at distance y = \(\frac{\mu_{0} I}{2 \pi y}\)
I = Current in the wire
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 14

PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction

Question 17.
A line charge λ per unit length is lodged uniformly onto the rim of a wheel of mass M and radius R. The wheel has light non-conducting spokes and is free to rotate without friction about its axis as shown in Fig. 6.22. A uniform magnetic field extends over a circular region within the rim. It is given by,
B = -Bk (r ≤ a; a < R)
= 0 (otherwise)
What is the angular velocity of the wheel after the field is suddenly switched off?
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 15
Answer:
Let ω be the angular velocity of the wheel of mass M and radius R.
Let e = Induced e.m.f. produced.
The rotational K.E. of the rotating wheel = \(\frac{1}{2}\) Iω2 ………… (1)
where, I = Moment of inertia of wheel
= \(\frac{1}{2}\) MR2 …………… (2)
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 16
or Work done = eQ
Applying the work energy theorem, we get
Rotational K.E. = Work done
or RotationalK.E. = Q × e …………… (3)
We know that the e.m.f. of a rod rotating in a uniform magnetic field is
given by \(\frac{1}{2}\) Bωa2 , since here the magnetic field is changing, we assume the average over the time span and thus average value of e.m.f. is given by
PSEB 12th Class Physics Solutions Chapter 6 Electromagnetic Induction 17

PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Punjab State Board PSEB 12th Class Physics Book Solutions Chapter 10 Wave Optics Textbook Exercise Questions and Answers.

PSEB Solutions for Class 12 Physics Chapter 10 Wave Optics

PSEB 12th Class Physics Guide Wave Optics Textbook Questions and Answers

Question 1.
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? The Refractive index of water is 1.33.
Answer:
Wavelength of incident monochromatic light, λ = 589 nm = 589 x 10-9 m
Speed of light in air, c = 3 x 108 m/s
Refractive index of water, µ = 1.33

(a) The ray will reflect back in the same medium as that of the incident ray. Hence, the wavelength, speed and frequency of the reflected ray will be the same as that of the incident ray.
Frequency of light is given by the relation,
v = \(\frac{c}{\lambda}=\frac{3 \times 10^{8}}{589 \times 10^{-9}}\)
= 5.09 x 1014 Hz
Hence, the speed, frequency, and wavelength of the reflected light are 3 x 108 m/s, 5.09 x 1014 Hz, and 589 nm respectively.

(b) Frequency of light does not depend on the property of the medium in which it is travelling. Hence, the frequency of the refracted ray in water will be equal to the frequency of the incident or reflected light in air.
Refracted frequency, v = 5.09 x 1014 Hz
Speed of light in water is related to the refractive index of water as
vw = \(\frac{c}{\mu}\)
vw = \(\frac{3 \times 10^{8}}{1.33} \) = 2.26 x 108 m/s
Wavelength of light in water is given by the relation,
λ = \(\frac{v_{w}}{v}=\frac{2.26 \times 10^{8}}{5.09 \times 10^{14}}\)
= 444.007 x 10-9 m
= 444.01 nm
Hence, the speed, frequency and wavelength of refracted light are 2.26 x 108 m/s, 5.09 x 1014 Hz
and 444.01 nm respectively.

Question 2.
What is the shape of the wavefront in each of the following cases:
(a) Light diverging from a point source. ;
(b) Light emerging out of a convex lens when a point source is placed at its focus.
(c) The portion of the wavefront of light from a distant star intercepted hy the Earth.
Answer:
(a) The shape of the wavefront in case of a light diverging from a point source is spherical. The wavefront emanating from a point source is shown in the given figure
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 1
(b) The shape of the wavefront in case of a light emerging out of a convex lens when a point source is placed at its focus is a plane or a parallel grid. This is shown in the given figure
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 2
(c) The portion of the wavefront of light from a distant star intercepted by the Earth is a plane.

PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Question 3.
(a) The refractive index of glass is 1.5. What is the speed of light in glass? (Speed of light in vacuum is 3.0x 108 ms-1). Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?
Answer:
(a) Refractive index of glass, µ = 1.5
Speed of light, c = 3 x 108 m/s
Speed of light in glass is given by the relation,
v = \(\frac{c}{\mu}=\frac{3 \times 10^{8}}{1.5} \) = 2 x 108 m/s
Hence, the speed of light in glass is 2 x 108 m/s.

(b) The speed of light in glass is not independent of the colour of light.
The refractive index of a violet component of white light is greater than the refractive index of a red component. Hence, the speed of violet light is less than the speed of red light in glass. Hence, violet light travels slower than red light in a glass prism.

Question 4.
In a Young’s double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm. Determine the wavelength of light used in the experiment.
Answer:
Distance between the slits, d = 0.28 mm = 0.28 x 10-3 m
Distance between the slits and the screen, D = 1.4m
Distance between the central fringe and the fourth (n = 4) fringe, u = 1.2 cm = 1.2 x 10-2 m
In case of a constructive interference, we have the ‘relation for the distance between the two fringes as
u = \(n \lambda \frac{D}{d}\)

where, n = order of fringes = 4 = 4λ= wavelength of light used
∴ λ = \(\frac{u d}{n D}\)
= \(\frac{1.2 \times 10^{-2} \times 0.28 \times 10^{-3}}{4 \times 1.4}\)
= 6 x 10-7 = 600 nm
Hence, the wavelength of the light is 600 nm.

Question 5.
In Young’s double-slit experiment using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ is K units. What is the intensity of light at a point where path difference is λ / 3?
Answer:
Here, I =K when path difference = λ
I’ = ? when path difference = \(\frac{\lambda}{3}\)
We know that the intensity I is given by
I = 2I0(1 + cosΦ) ………………………….. (1)
When Φ = phase difference

When path difference is λ, let Φ be the phase difference.
∴ From relation,
Φ’ = \(\frac{2 \pi}{\lambda}\) x, we get
Φ’ = \(\frac{2 \pi}{\lambda} \cdot \lambda\) = 2π
∴From eqn.(1),
K = 2I0 (1+ cos 2π) (∵ cos 2π =1)
= 2I0(1+1)
or K = 4I0
or I0 = \(\frac{K}{4}\) ……………………………… (2)
Let Φ, be the phase difference for a path difference \(\frac{\lambda}{3}\)
∴ Φ1 = \(\frac{2 \pi}{\lambda} \times \frac{\lambda}{3}\)
= \(\frac{2 \pi}{3}\)
∴ I’ = 2I0(1+cosΦ1)
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 3
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Question 6.
A beam of light consisting of two wavelengths, 650 mn and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.
(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.
(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?
Answer:
First wavelength of the light beam, λ1 = 650 nm
Second wavelength of the light beam, λ2 = 520 nm
Distance of the slits from the screen = D
Distance between the two slits = d
(a) Distance of the nth bright fringe on the screen from the central maximum is given by the relation,
x = nλ1\(\left(\frac{D}{d}\right)\)
For third bright fringe, n = 3
∴ x = 3x 650\(\left(\frac{D}{d}\right)\) = 1950\(\left(\frac{D}{d}\right)\) nm

(b) Let the nth bright fringe due to wavelength λ2 and (n – 1)th bright fringe due to wavelength λ1 coincide on the screen. We can equate the conditions for bright fringes as nλ2 = (n-1)λ
520 n = 650 n -650
650 = 130 n
∴ n = 5
Hence, the least distance from the central maximum can be obtained by the relation
x = nλ2\(\left(\frac{D}{d}\right)\) = 5 x 520\(\left(\frac{D}{d}\right)\) = 2600\(\left(\frac{D}{d}\right)\) nm
Note : The value of d and D are not given in the question.

Question 7.
In a double-slit experiment, the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/ 3.
Answer:
Distance of the screen from the slits, D = 1 m
The wavelength of light used, λ1 = 600 nm
Angular width of the fringe in air, θ1=0.2°
Angular width of the fringe in water = θ2
Refractive index of water, µ = \(\frac{4}{3}\)
Refractive index is related to angular width as
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 4
Therefore, the angular width of the fringe in water will reduce to 0.15°.

Question 8.
What is the Brewster angle for air to glass transition? (Refractive index of glass = 1.5)
Answer:
Refractive index of glass, µ = 1.5
Brewster angle = θ
Brewster angle is related to refractive index as
tanθ = µ
θ= tan-1 (1.5)=56.31°
Therefore, the Brewster angle for air to glass transition is 56.3 1°.

Question 9.
Light of wavelength 5000 A falls on a plane reflecting surface. What are the wavelength and frequency of the reflected light? For what angle of incidence is the reflected ray normal to the incident ray?
Answer:
Wavelength of incident light, λ = 5000 Å = 5000 x 10-10 m
Speed of light, c =3 x 108 m
Frequency of incident light is given by the relation,
v = \(\frac{c}{\lambda}=\frac{3 \times 10^{8}}{5000 \times 10^{-10}}\) = 6 x 1010 Hz

The wavelength and frequency of incident light is the same as that of reflected ray. Hence, the wavelength of reflected light is 5000 Å and its frequency is 6 x 1014 Hz. When reflected ray is normal to incident ray, the sum of the angle of incidence, ∠i and angle of reflection, ∠r is 90°.

According to the law of reflection, the angle of incidence is always equal to the angle of reflection. Hence, we can write the sum as
∠i + ∠r =90
∠i + ∠i=90
∠i = \( \frac{90}{2}\) = 45°
Therefore, the angle of incidence for the given condition is 45°.

PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Question 10.
Estimate the distance for which ray optics is a good approximation for an aperture of 4 mm and wavelength 400 nm.
Answer:
Fresnel’s distance (ZF) is the distance for which the ray optics is a good approximation. It is given by the relation,
ZF = \(\frac{a^{2}}{\lambda}\)
where,
aperture width, a = 4 mm = 4 x 10-3m
wavelength of light, λ = 400 nm = 400 x 10-9 m
ZF = \(\frac{\left(4 \times 10^{-3}\right)^{2}}{400 \times 10^{-9}}\) = 40 m
Therefore, the distance for which the ray optics is a good approximation is 40 m.

Additional Exercises

Question 11.
The 6563 Å Hα line emitted by hydrogen in a star is found to be red-shifted by 15 Å. Estimate the speed with which the star is receding from the Earth.
Answer:
Wavelength of Hα line emitted by hydrogen, λ = 6563 Å
= 6563 x 10-10 m.
Star’s red-shift, (λ’ – λ) = 15 Å = 15 x 10-10 m
Speed of light, c = 3 x 108 m/s
Let the velocity of the star receding away from the Earth be v.
The redshift is related with velocity as
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 5
Therefore, the speed with which the star is receding away from the Earth is 6.87 x105 m/s.

Question 12.
Explain how corpuscular theory predicts the speed of light in a medium, say, water, to be greater than the speed of light in vacuum. Is the prediction confirmed by experimental determination of the speed of light in water? If not, which alternative picture of light is consistent with experiment?
Answer:
According to Newton’s corpuscular theory of light, when light corpuscles strike the interface of two media from a rarer (air) to a denser (water) medium, the particles experience forces of attraction normal to the surface. Hence, the normal component of velocity increases while the component along the surface remains unchanged.
Hence, we can write the expression
c sin i = v sin r …………………………… (1)
where i = Angle of incidence
r = Angle of reflection
c = Velocity of light in air
v = Velocity of light in water

We have the relation for a relative refractive index of water with respect to air as
μ = \(\frac{v}{c}\)
Hence, equation (1) reduces to
\(\frac{v}{c}=\frac{\sin i}{\sin r}\) = μ
But, μ > 1
Hence, it can.be inferred from equation (2) that v > c. This is not possible since this prediction is opposite to the experimental results of c > v. The wave picture of light is consistent with the experimental results.

Question 13.
You have learnt in the text how Huygen’s principle leads to the laws of reflection and refraction. Use the same principle to deduce directly that a point object placed in front of a plane mirror produces a virtual image whose distance from the mirror is equal to the object’s distance from the mirror.
Answer:
Let an object at 0 be placed in front of a plane mirror MO’ at a distance r (as shown in the given figure).
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 6
A circle is drawn from the centre (0) such that it just touches the plane mirror at point 0′. According to Huygen’s principle, XY is the wavefront of incident light. If the mirror is absent, then a similar wavefront X’ Y’ (as XT) would form behind 0′ at distance r (as shown in the given figure).
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 7
X’ Y’ can be considered as a virtual reflected ray for the plane mirror. Hence, a point object placed in front of the plane mirror produces a virtual image whose distance from the mirror is equal to the object distance (r).

PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Question 14.
Let us list some of the factors, which could possibly influence the speed of wave propagation :
(i) nature of the source.
(ii) direction of propagation.
(iii) motion of the source and/or observer.
(iv) wavelength.
(v) intensity of the wave.
On which of these factors, if any, does
(a) the speed of light in vacuum,
(b) the speed of light in a medium (say, glass Or water), depend?
Answer:
(a) The speed of light in a vacuum i. e., 3 x 108 m/s (approximately) is a universal constant. It is not affected by the motion of the source, the observer, or both. Hence, the given factor does not affect, the speed of light in a vacuum.
(b) Out of the listed factors, the speed of light in a medium depends on the wavelength of light in that medium.

Question 15.
For sound waves, the Doppler formula for frequency shift differs slightly between the two situations : (i) source at rest; observer moving, and (ii) source moving; observer at rest. The exact Doppler formulas for the case of light waves in a vacuum are, however, strictly identical for these situations. Explain why this should be so. Would you expect the formulas to be strictly identical for the two situations in the case of light travelling in a medium?
Answer:
No, sound waves can propagate only through a medium. The two given situations are not scientifically identical because the motion of an observer relative to a medium is different in the two situations. Hence, the Doppler formulas for the two situations cannot be the same.

In the case of light waves, sound can travel in a vacuum. In a vacuum, the above two cases are identical because the speed of light is independent of the motion of the observer and the motion of the source. When light travels in a medium, the above two cases are not identical because the speed of light depends on the wavelength of the medium.

Question 16.
In a double-slit experiment using light of wavelength 600 nm, the angular width of a fringe formed on a distant screen is 0.1°. What is the spacing between the two slits?
Answer:
Wavelength of light used, λ = 600 nm = 600 x 10-9 m
Angular width of fringe, θ = 0.1° = 0.1 x \(\frac{\pi}{180}=\frac{3.14}{1800}\)rad
Angular width of a fringe is related to slit spacing (d) as
θ = \(\frac{\lambda}{d}\)
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 8
Therefore, the spacing between the two slits is 3.44 x 10-4 m.

Question 17.
Answer the following questions:
(a) In a single slit diffraction experiment, the width of the slit is made double the original width. How does this affect the size and intensity of the central diffraction band?
(b) In what way is diffraction from each slit related to the interference pattern in a double-slit experiment?
(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?
(d) Two students are separated by a 7 m partition wall in a room 10 m high. If both light and sound waves can bend around obstacles, how is it that the? students are unable to see each other even though they can converse easily.
(e) Ray optics is based on the assumption that light travels in a straight line. Diffraction effects (observed when light propagates through small apertures/slits or around small obstacles) disprove this assumption. Yet the ray optics assumption is so commonly used in an understanding of location and several other properties of images in optic instruments. What is the justification?
Answer:
(a) In a single slit diffraction experiment, if the width of the slit is made double the original width, then the size of the central diffraction band reduces to half and the intensity of the central diffraction band increase up to four times.

(b) The interference pattern in a double-slit experiment is modulated by diffraction from each slit. The pattern is the result of the interference of the diffracted wave from each slit.

(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. This is because light waves are diffracted from the edge of the circular obstacle, which interferes constructively at the centre of the shadow. This constructive interference produces a bright spot.

(d) Bending of waves by obstacles by a large angle is possible when the size of the obstacle is comparable to the wavelength of the waves. On the one hand, the wavelength of the light waves is too small in comparison to the size of the obstacle. Thus, the diffraction angle will be very small. Hence, the students are unable to see each other. On the other hand, the size of the wall is comparable to the wavelength of the sound waves. Thus, the bending of the waves takes place at a large angle. Hence, the students are able to hear each other.

(e) The justification is that in ordinary optical instruments, the size of the aperture involved is much larger than the wavelength of the light used.

Question 18.
Two towers on top of two hills are 40 km apart. The line joining them passes 50 m above a hill halfway between the towers. What is the longest wavelength of radio waves, which can be sent between the towers without appreciable diffraction effects?
Answer:
Distance between the towers, d = 40 km
Height of the line joining the hills, d = 50 m
Thus, the radial spread of the radio waves should not exceed 50 km.
Since the hill is located halfway between the towers, Fresnel’s distance can be obtained as
ZP = 20 km = 20 x 103m
Aperture can be taken as
a = d= 50 m

Fresnel’s distance is given by the relation,
Zp = \(\frac{a^{2}}{\lambda}\)
where, λ = wavelength of radio waves
∴ λ = \(\frac{a^{2}}{Z_{P}}\)
= \(\frac{(50)^{2}}{20 \times 10^{3}}\) = 1250 x 10-4 = 0.1250 m
= 12.5 cm
Therefore, the wavelength of the radio waves is 12.5 cm.

PSEB 12th Class Physics Solutions Chapter 10 Wave Optics

Question 19.
A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.
Answer:
Wavelength of light beam, λ = 500 nm = 500 x 10-9 m
Distance of the screen from the slit, D=1m
For first minima, n = 1
Distance between the slits = d
Distance of the first minimum from the centre of the screen can be obtained as
x = 2.5mm = 2.5 x 10-3 m
It is related to the order of minima as
PSEB 12th Class Physics Solutions Chapter 10 Wave Optics 9
Therefore, the width of the slits is 0.2 mm.

Question 20.
Answer the following questions :
(a) When a low flying aircraft passes overhead, we sometimes notice a slight shaking of the picture on our TV screen. Suggest a possible explanation.
(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?
Answer:
(a) Weak radar signals sent by a low flying aircraft can interfere with the TV signals received by the antenna. As a result, the TV signals may get distorted. Hence, when a low flying aircraft passes overhead, we sometimes notice a slight shaking of the picture on our TV screen.

(b) The principle of linear superposition of wave displacement is essential to our understanding of intensity distributions and interference patterns. This is because superposition follows from the linear character of a differential equation that governs wave motion. If y1 and y2 are the solutions of the second-order wave equation, then any linear combination of y± and y2 will also be the solution of the wave equation.

Question 21.
In deriving the single slit diffraction pattern, it was stated that the intensity is zero at angles of n λ/a. Justify this by suitably dividing the slit to bring out the cancellation.
Answer:
Consider that a single slit of width d is divided into n smaller slits.
∴ Width of each slit, d’ = \(\frac{d}{n}\)
Angle of diffraction is given by the relation,
θ = \(\frac{\frac{d}{d^{\prime}} \lambda}{d}=\frac{\lambda}{d^{\prime}} \)
Now, each of these infinitesimally small slit sends zero intensity in direction θ. Hence, the combination of these slits will give zero intensity.