Punjab State Board PSEB 8th Class Maths Book Solutions Chapter 14 Factorization Ex 14.4 Textbook Exercise Questions and Answers.
PSEB Solutions for Class 8 Maths Chapter 14 Factorization Ex 14.4
1. Find and correct the errors in the following mathematical statements:
Question 1.
4 (x – 5) = 4x – 5
Solution:
Error: 4 × – 5 = (- 20) and not (- 5)
Correct statement: 4 (x – 5) = 4x – 20
Question 2.
x (3x + 2) = 3x2 + 2
Solution:
Error: x × 2 = 2x
Correct statement: x (3x + 2) = 3x2 + 2x
Question 3.
2x + 3y = 5xy
Solution:
Error: 2x and 3y are unlike terms.
So their sum is not possible.
Correct statement: 2x + 3y = 2x + 3y
Question 4.
x + 2x + 3x = 5x
Solution:
Error: x, 2x and 3x are like terms. So sum of their coefficient =1 + 2 + 3 = 6.
Correct statement: x + 2x + 3x = 6x
Question 5.
5y + 2y + y – 7y = 0
Solution:
Error : 5y, 2y, y and – 7y all are like terms here. So sum of their coefficient = 5 + 2 + 1 – 7 = 1.
Correct statement: 5y + 2y + y – 7y = y
Question 6.
3x + 2x = 5x2
Solution:
Error: When like terms are added or subtracted their exponents do not change.
Correct statement: 3x + 2x = 5x
Question 7.
(2x)2 + 4 (2x) + 7 = 2x2 + 8x + 7
Solution:
Error: (2x)2 = 2x × 2x = 4x2
Correct statement:
(2x)2 + 4 (2x) + 7 = 4x2 + 8x + 7
Question 8.
(2x)2 + 5x = 4x + 5x = 9x
Solution:
Error : (2x)2 = (2x × 2x) = 4x2
Correct statement: (2x)2 + 5x = 4x2 + 5x
Question 9.
(3x + 2)2 = 3x2 + 6x + 4
Solution:
Error : (3x + 2)2
= (3x)2 + 2 (3x)(2) + (2)2
= 9x2 + 12x + 4
Correct statement:
(3x + 2)2 = 9x2 + 12x + 4
10. Substituting x = – 3 in
Question (a)
x2 + 5x + 4 gives (- 3)2 + 5 (- 3) + 4 = 9 + 2 + 4 = 15
Solution:
Error : 5 (- 3) = – 15 and not 2
Correct statement:
Substituting x = (- 3) in, x2 + 5x + 4
= (- 3)2 + 5 (-3) + 4
= 9 – 15 + 4 = 9 + 4 – 15
= 13 – 15
= (-2)
Question (b)
x2 – 5x + 4 gives (- 3)2 – 5 (- 3) + 4 = 9 – 15 + 4 = -2
Solution:
Error: -5 (-3) = + 15 and not (-15)
Correct statement:
Substituting x = (- 3) in,
x2 – 5x + 4
= (- 3)2 – 5 (- 3) + 4
= 9 + 15 + 4
= 28
Question (c)
x2 + 5x gives (- 3)2 + 5 (- 3) = – 9 – 15 = – 24
Solution:
Error : (- 3)2 = + 9
Correct statement:
Substituting x = (- 3) in, x2 + 5x
= (- 3)2 + 5 (- 3)
= 9 – 15 = – 6
Question 11.
(y – 3)2 = y2 – 9
Solution:
Error : (y – 3)2
= (y)2 – 2 (y)(3) + (- 3)2
= y2 – 6y + 9
Correct statement: (y – 3)2 = y2 – 6y + 9.
Question 12.
(z + 5)2 = z2 + 25
Solution:
Error : (z + 5)2
= (z)2 + 2 (z)(5) + (5)2
= z2 + 10 z + 25
Correct statement: (z + 5)2
= z2 + 10z + 25
Question 13.
(2a + 3b) (a – b) = 2a2 – 3b2
Solution:
Error : (2a + 3b) (a – b)
= 2a (a-b) + 3b (a-b)
= 2a2 – 2ab + 3ab – 3b2
= 2a2 + ab – 3b2
Correct statement: (2a + 3b) (a – b)
= 2a2 + ab – 3b2
Question 14.
(a + 4) (a + 2) = a2 + 8
Solution:
Error : (a + 4) (a + 2) = a (a + 2) + 4 (a + 2)
= a2 + 2a + 4a + 8
= a2 + 6a + 8
Correct statement: (a + 4) (a + 2)
= a2 + 6a + 8
Question 15.
(a – 4) (a – 2) = a2 – 8
Solution:
Error : (a – 4) (a – 2) = a (a – 2) – 4 (a – 2)
= a2 – 2a – 4a + 8
= a2 – 6a + 8
Correct statement: (a – 4) (a – 2)
= a2 – 6a + 8
Question 16.
\(\frac{3 x^{2}}{3 x^{2}}\) = 0
Solution:
Error: Numerator and denominator, both are same. So their division is 1.
Correct statement:\(\frac{3 x^{2}}{3 x^{2}}\) = 1
Question 17.
\(\frac{3 x^{2}+1}{3 x^{2}}\) = 1 + 1 = 2
Solution:
Error: \(\frac{3 x^{2}+1}{3 x^{2}}=\frac{3 x^{2}}{3 x^{2}}+\frac{1}{3 x^{2}}\)
= 1 + \(\frac{1}{3 x^{2}}\)
Correct statement: \(\frac{3 x^{2}+1}{3 x^{2}}\) = 1 + \(\frac{1}{3 x^{2}}\)
Question 18.
\(\frac{3 x}{3 x+2}=\frac{1}{2}\)
Solution:
Error: Here, simplification of LHS is not possible.
Correct statement: \(\frac{3 x}{3 x+2}=\frac{3 x}{3 x+2}\)
Question 19.
\(\frac{3}{4 x+3}=\frac{1}{4 x}\)
Solution:
Error: Here, simplification of LHS is not possible.
Correct statement: \(\frac{3}{4 x+3}=\frac{3}{4 x+3}\)
Question 20.
\(\frac{4 x+5}{4 x}\) = 5
Solution:
Error: \(\frac{4 x+5}{4 x}\)
= \(\frac{4 x}{4 x}+\frac{5}{4 x}\)
= 1 + \(\frac{5}{4 x}\)
Correct statement: \(\frac{4 x+5}{4 x}\) = 1 + \(\frac{5}{4 x}\)
Question 21.
\(\frac{7 x+5}{5 x}\) = 7x
Error: \(\frac{7 x+5}{5 x}\)
= \(\frac{7 x}{5}+\frac{5}{5}\)
= \(\frac{7 x}{5}\) + 1
Correct statement: \(\frac{7 x+5}{5}=\frac{7 x}{5}\) + 1